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ABSTRACT

The primary aim of our project has been to investigate the role played by

the initial rovibrational excitation of a molecule in enhancing the cross

sections and, therefore, the rates of dissociative electron attachment to the

molecule. An enhancement of the attachment rate results in the enhancement of

the production of negative ion beams. The processes of dissociative electron

attachment and of resonant vibrational excitation are complementary processes

as the intermediate resonant anion state of the molecule, formed by electron

impact, either can autodetach the electron or can dissociate itself.

Therefore, as a further part of the present investigations we have explored

the contribution of the resonant state to the cross sections for vibrational

excitation of the molecule. Our first project was to study the effect of

initial vibrational excitation on the rate of production of negative atomic

lithium ions via the process of dissociative electron attachment to lithium

dimers. The rate is enhanced by almost an order of magnitude if the molecule

is initially vibrationally excited; however, the effect is certainly more

dramatic for hydrogen molecules than for lithium dimers. In the second

project we developed a simple model for the resonant vibrational excitation of

a molecule. In this model the potential energy curves of the electronic

states of the molecule and of its resonant anion are replaced by those of two

simpL harmonic oscillators of different frequencies and the width of the

resonance is taken to be constant. Simple recursion relations among

excitation amplitudes are used for evaluation of vibrational excitation cross

sections for any transiLioa.
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The principal aim of the investigations under the present Grant (number

AFOSR-84-0143) has been to study the effect of vibrational excitation of a

molecule (say, AB) on the production of light negative ion beams (for example,

beams of Li H D-, etc.) via the process of dissociative electron

attachment. The intermediate resonant state AB , which as one possibility

leads to dissociative attachment (AB- A + B), can also lead to

vibrational excitation (AB-- AB (vf) + e) following the autodetachment of

the electron. Thus the processes of dissociative attachment and resonantIIvibrational excitation are best investigated as two complementary projects of

the same endeavor . During the tenure of the Grant (September 1, 1984 -

August 31, 1987) we concentrated on various different projects. The first

project involved the investigations of the electron attachment to the lithium

dimers. The second project concerned determination of the resonant as well as

nonresonant vibrational excitation of lithium dimers. For the resonant

vibrational excitation we developed a simple and reasonable model which

allowed rapid evaluation of the vibrationally inelastic and superelastic

amplitudes using recursion relations.

The details of various investigations carried out during the three years

of our endeavor are as follows:

Dissociative Electron Attachment to Lithium Dimers

Previous theoretical2 and experimental studies have shown that in the

case of molecular hydrogen the cross sections for dissociative attachment are

strongly enhanced if the molecule H2 is initially rovibrationally excited.

In order to ascertain whethcr slmilar ea,,cent coie t met cro- se:Lion3

occurs for other molecules we investigated the process of electron attachment

to lithium dimers which are isovalent with the molecular hydrogen. It is

found that analogous to molecular hydrogen the rate of electron attachment to
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lithium dimers by the process of dissociative attachment is strongly enhanced

if the dimers are initially vibrationally excited.

The fact that both the lithium dimers and the hydrogen molecules are

isovalent leads to similarities between the two molecules as far as the

4
configurations of the electronic states are concerned . For example, the

lowest electronic states of the negative molecular ions with configurations (ICg

)2 (inu)2 (2 )2 (2) for Li- and (1) 2 (In ) for H2 have similar
u g u 2 g

2 +
symmetry, namely, E . However, unlike hydrogen molecule, the lithium dimersu

possess a large polarizability and a weak bond strength which makes the ground

2 +
state of Lia true bound state. In the case of H , on the other hand, the u

state is a true bound state only for internuclear separations R larger than

2.9 a.u. and an autodetaching state for smaller values of R. The first

2 + 2 2
excited state with symmetry 2Z+ and configurations (IC) (1: )- (2cr) (2c, )gg g u

2 -

for Li2 and (in ) (in ) for H is a partly Feshbach and a partly shape2g u2

resonance in nature for both molecular anions. This resonance is the

lowest-lying resonance of Li and because of its nature (namely Feshbach) the

resonance is expected to have a small width and a long lifetime, This

resonant state is essentially responsible for dissociative electron attachment

to lithium dimers.

Potential curves of the electronic states of Li2 and Lil relevant to

the attachment process are shown in Figure 1. Due to its autodetaching nature

the A 2 + electronic state of Li exhibits a complex potential energy curve
g

whose real part along with the potential curve of the ground electronicg

state of the neutral Li2 is shown in the Figure. The two curves cross at R

6.5 R.u. so that only for internuclear separations smaller than 6.5 a.u. the A
4

state is autodetaching. Detailed orbital optimized CI calculations reveal

that the X and the A states have their respective potential minimum at 5.1
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a.u. and 5.9 a.u. The imaginary part of the complex potential energy curve of
the A state of Li2 is related to the width of this resonant state. For

internuclear separations smaller than 6.5 a.u. this resonant state can

autodetach into Li2 + e. In this autodetachment process [ 2 I + + e ]g -g

the lowest contributing partial wave is an s-wave. Thus Wigner's threshold

law for the width of this state implies -(R) = c.k(R), where k(R) is the wave

number of the electron emitted at internuclear separation R and c is a

constant. To obtain this constant c the fully optimized orbital exponents of

the CI wave functions were smoothly extrapolated from the variationally stable

region (R > 6.5 a.u.) into the autodetaching region (R '- 6.5 a.u.) to obtain

the matrix elements coupling the discrete and the continuum states. These

matrix elements are related to the autodetachment width by Fermi's golden

rule. This procedure yielded c = 0.0143 a.u. Thus the width of the A

state of Li which is primarily responsible for dissociative electron
2 '

attachment to lithium dimers, as a function of internuclear separation is

given, in atomic units, by 1(R) = 0.0143.k(R) and is shown in Figure 2. Tne

small value of the width is characteristic of the Feshbach nature of the

resonance.

The similarities between lithium dimers and hydrogen molecules suggest

that theoretical approaches used successfully in the past for investigating

the cross sections and rates for dissociative electron attachment to H2 car

be employed for similar investigations for Li Thus local width resonant

scattering theory is used for obtaining the cross sections as a function of

the incident electron energy and the corresponding rates as a function of the

electron temperature T ( or, equivalently, the average electron energy E =

3kT/2.) for dissociative electron attachment to Li2, e + Li2  Li + Li

The contribution of only the 2 resonance of Li is taken into account forg2
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calculating the attachment cross sections. Figure 3 shows the results of such

a calculation. The structure near the peak of the cross sections, as observed

in this Figure, is possibly an artifact of the limited range of internuclear

separations over which the resonant nuclear wave function is extended.

Analogous to molecular hydrogen the cross sections for dissociative electron

attachment to lithium dimers, as a function of the incident electron energy,

show a rapid increase leading to a peak in the cross section, followed by a

gradual decrease. The difference, however, is that the cross section peak is

right at the energetic threshold in the case of hydrogen while the attachment

cross section in the case of lithium peaks at an energy somewhat above the

energetic threshold. This difference in behavior could be explained in terms

of the Franck-Condon factors relating the vibrational levels of the neutral

and the anion electronic states.

First part of the calculations involved computation of the energy values

and the corresponding wave functions of various vibrational levels of the

lithium dimers. Highly accurate potential curves of Li2 and Li2 are

4available in published literature . The energy values for various

vibrational levels using these potential curxes agree quite favorably, as

shown in the Table I below, with the experimental energy values.

Recent measurements6 of the rate constant k(T) for dissociative electron

attachment to highly vibrationally excited lithium dimers indicate that this

-8 3 -l
rate for thermal electrons is about 10 cm sec . In order to convert the

present attachment cross sections into attachment rates the cross sections are

fitted to a simple analytical form:

(E) = apeak * exp 1-(E-E peak)/E} (1)

where Opeak is the peak attachment cross section and E is a constant. Using

this analytical form for the attachment cross sections it is possible to
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obtain the attachment rates as well in an analytical form if a Maxwellian

distribution is assumed for the electron energies. The attachment rate as a

function of the electron temperature is then given by

F7 3Eek13 -12
k(E) 7Tm peak .exp(-3E peak/2E) I+ --2 + E +

2E

The average electron energy E is related to the electron temperature T by E =

3kT/2.

It is observed that the cross sections as well as the rates of Li

formation are enhanced if the molecule Li2 is initially vibrationally

excited. The factors by which the peak attachment cross sections are

enhanced, on vibrationally exciting the lithium molecule initially, aie

summarized and compared with the corresponding factors for H2 in the Table

II below.

The reason for enhancement of the peak attachment cross section is that,

as the internal energy of the molecule is initially increased via vibrational

excitation, the range of internuclear separations R over which electron

capture occurs is increased due to an increased vibrational amplitude.

Finally, the rates of electron attachment to Li2 (that is, the rates of

production of Li beams) are calculated as a function of the electron

temperature T using Eq.(2) and are shown in Figure 4. The rate is as low as

-11 3 -1
10 cm sec when the a !ecule is in its lowest vibrational level and the

rate increases by almost an order of magnitude for each quantum of vibrational

excitation of the molecular Li 2 . It is thus pla-sible that the total

attachment rate can approach the experimental value of 10- 8 cm sec as the

initial excitation of the molecule is raised to the v = 10 level. The

enhancement of the attachment rate, which is a direct consequence of the

y -~ . ~.
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TABLE I. Vibrational energy levels of Li2 .

Vibrational level (v) Energy value (eV)

of Li2  Present calculation Experimental value5

0 0.02170 0.02170
1 0.06459 0.06463
2 0.10683 0.10691
3 0.14836 0.14853
4 0.18914 0.18950
5 0.22910 0.22980
6 0.26806 0.26943
7 0.30556 0.30838

TABLE II. Enhancement factors for electron attachment to Li2

Initial vibrational level,v, Factor by which the peak attachment
the molecule is in. cross section is enhanced over that

for v=O.

Li2  H2 (theory)
2 H2 (experiment)

3

1 7.4 32.5 30 ± 10
2 16.4 465 500 ± 175

' %*
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TABLE III. Rates of dissociative electron attachment to vibrationally excited
lithium dimers at various electron temperatures T. E is the
average electron energy and v refers to the vibrational level of
Li 2

Attachment rate (in cm sec- )
1E-3kT/2 (eV) v -0 v-i1 v=-2

0.1 .285(-15) .432(-14) .157(-13)

0.2 .368(-12) .445(-1l) .139(-10)

0.3 .311(-11) .351(-10) .104(-9)

0.4 .796(-11) .869(-10) .252(-9)

0.5 .130(-10) .139(-9) .399(-9)

0.6 .171(-10) .181(-9) .514(-9)

0.7 .201(-10) .211(-9) .596(-9)

0.8 .221(-10) .230(-9) .647(-9)

0.9 .233(-10) .241(-9) .677(-9)

1.0 .239(-10) .246(-9) -689(-~c)

1.1 .241(-10) .247(-9) .690(-9)

1.2 .240(-10) .245(-9) .684(-9)

1.3 .236(-10) .241(-9) .671(-9)

1.4 .232(-10) .236(-9) .656(-9)

1.5 .226(-10) .230(-9) .638(-9)

1.6 .220(-10) .223(-9) .619(-9)

1.7 .213(-10) .216(-9) .599(-9)

1.8 .207(-10) .209(-9) .579(-9)

1.9 .200(-10) .202(-9) .559(-9)

2.0 .193(-10) .195(-9) .540(-9)

----------------------------------------------------------I
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enhancement of the attachment cross section, is expected for any distribution

of the electron energies. It is to be noted that for the isovalent molecule

H2 as well the maximum predicted rate for electron attachment via the

process of dissociative attachment is7 about 10- 8 cm 3sec .

Analogous to molecular hydrogen, the lithium dimers exhibit an

enhancement of the cross sections as well as of the rates of dissociative

electron attachment if they are vibrationally excited. Detailed calculations

have been carried out only for the lowest three vibrational levels of the

dimers. In the immediate future these calculations will be extended to higher

vibrational levels upto and including the endoergic regime. Experimental

observations6 of rates of electron attachment to lithium indicate that this
-8 3 -l

rate can be as high as 10 cm sec when the molecule Li2 is in the

vibrational level v = 10.

In the case of molecular hydrogen it has been established that the

rotational excitation of the molecule also aids in the enhancement of the

electron attachment rate; however, the enhancement factor is larger for

initial vibrational excitation than for initial rotational excitation. Recent

experimental observations on the electron attachment to lithium dimers, on

the other hand, seem to suggest that initial rotational excitation plays

little role in controlling the attachment to Li 2  A theoretical

investigation of the effect of initial rotational excitation on the rate of Li

formation via the process of dissociative electron attachment to Li will be2

made within the resonance scattering model.

Resonant Vibrational Excitation of Molecular Lithium

We have developed8 a simple and reasonable model for resonant

vibrational excitation of molecules. In this model the potential curves of the

molecule and of its resonant anion state are replaced by those of
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one-dimensional simple harmonic oscillators of different frequencies and

curvatures and the width of the resonance is taken to be constant. The model

obviously works best for excitation of low lying levels. A schematic

representation of the potential energy curves of an arbitrary molecule AB and

of its resonant anion AB by linear harmonic oscillators is shown in Figure

5. In the earlier parts of our investigations we noted that for the case of

equal frequency oscillators it is possible to obtain recursion relations among

the excitation amplitudes. However, on realizing that the origin of the

recursion relation among amplitudes, for the equal frequency case, is really a

similar relation among the corresponding Franck-Condon factors, it became

natural to investigate9 in detail the recursion relations among the

Franck-Condon factors for a two-center harmonic oscillator system. Using

these recursion relations of two-center harmonic oscillator matrix elements we

have been able to obtain recursion relations among the resonant vibrational

excitation amplitudes even when the frequencies of the two harmonic

oscillators are unequal. If the amplitude, A(m+n), for excitation from the

initial level with vibrational quantum number m to the final level with

vibrational quantum number n is written as

A(m-n;c) 27( 2 1/2 a(m--n;)

t- ki kf

then a(m)n) satisfies8 the following recursion relations:

2

[2n(O2+0- 4xo(Q+] )+(w+) +-I OX - a(m- -n;) + 4(o m n

2o 2(2W/o,1 2 [(n+1)fl2a(m-n+1) + n'aa(m-n-1;)]

_( t)) [(n+l)(n+2)lI a(m-n+2;c) + [n(n-1)] la(m--n-2;E) } = 0

with Q = 1 -8E + mrn + ((o -o.)/2- A + I/2]/.. -
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AB7

AB

CDC

6E

Internuclear Sepatation

Figure 5. A schematic representation of the potential energy curves of the
molecule AB and its resonant anion AB by linear harmonic
oscillators.
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Here c is the energy of the incident electron, u and w are the

frequencies of the two oscillators, F is the resonance width, r is the

relative separation of the oscillators, w is the reduced mass of the nuclei

2
andw =/-fir2. 6E isdefined in Figure 5. The level shift A is taken to be zero

0

in the present calculations. Note that when either n or m is zero the

recursion relation among the excitation amplitudes reduces to a three-term

recursion relation. Furthermore, amplitude for any transition -- inelastic or

superelastic -- can be obtained from a mere knowledge of a(OO), a(1-1) and

a(Ol) only. Figure 6 shows the results of such a calculation for the

vibrational excitation of molecular nitrogen, which is treated as a test case

in the present calculations. It is worth noting that the spectacular peaks in

the excitation cross sections for molecular nitrogen are bett2r reproduced by

using unequal frequency oscillators. A similar calculation is done using this

simple model to predict the cross sections for the vibrational excitation of

Li . The vibrational excitation cross sections for molecular lithium are

displayed in Figure 7. It is easy to verify that the first five vibrational

levels of the simple harmonic oscillators utilized in the present calculations

have the same energy levels, within 5%, as the actual vibrational levels of

the ground electronic states of these two molecules. It is not surprising,

based on the similarities between H2 and Li2, that the excitation cross

sections for molecular lithium as shown in Figure 7 are almost structureless.

All of the cross sections show only one peak, and the location of the peak is

roughly the same for all transitions. We note in passing that in order to use

the above recursion relation for obtaining the vibrational excitation cross

sections it is necessary to know the amplitude for vibrationally elastic cross

section which in turn could be obtained by summing the contributions of

various partial waves for a given electron-molecule interaction. Recently

: : .' m ,I
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Figure 6. Cross sections for the resonant vibrational excitation of molecular
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represent the experimental values of the respective cross sections
from G. J. Schulz, Phys. Rev. 135, A988 (1964).
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10
during such an investigation we calculated the second Born contribution of

long range forces to higher partial wave phase shifts.

Nonresonant Vibrational Excitation of Molecular Lithium

As one possible nonresonant process for the vibrational excitation of a

molecule we investigated the process of radiative decay from the excited

electronic states of the molecule. For the excitation of the vibrational

levels of the ground X 1 state of lithium molecule we considered the
g

following two step process. In the first step, the molecule is excited from

its ground electronic state to a higher singlet electronic state either by

electron impact or by photon pumping. Schematically,

1 + 1,'+ 1
e + Li, (X +  , v )-Li- (A , B ) + e

g 1 + uU
Li . , + g +hv-Li (A + B17).
2 g 1 2 u

In the second step, the electronically excited molecule undergoes a rapid

radiative decay to an excited vibrational level of the ground electronic

state. I+ 1 1+
Li 2 (A i ,B ) Li 2 (X - +  v)+h2 ui' u 2 g'f

Our calculations of the relative cross sections for excitation of higher

vibrational levels of the ground electronic state of molecular lithium by this

nonresonant process indicate that in general the excitation occuring via the

formation of the A electronic state is more efficient than via the formation

of the B electronic state. Furthermore, this process populates all

vibrational levels of the ground electronic state upto about v = 9 with high

probability for both electron collisional excitation as well as the photon

pumping of the A state. This fact has recently been utilized 1 2 by

investigators for obtaining vibrationally excited molecular lithium in the

laboratory.
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Finally, an updated list of all the publications and presentations

carried out under the tenure of the present Grant is provided in the

appendices A and B.

A Personal Note

The kind support of the Air Force Office of Scientific Research, for

which we are very grateful, has so far allowed us to investigate the role

played by the initial vibrational excitation of molecular lithium in enhancing

the rate of production of negative ions of atomic lithium via the process of

dissociative elctron attachment. As part of these endeavors we also

investigated the resonant and nonresonant vibrational excitation of lithium

dimers. We are continuing our theoretical investigations, under Grant Number

AFOSR-87-0342, on the production of light negative ions (hydrogen and its

heavier isotopes) by dissociative attachment. Furthermore, with the aim of

having an effective neutral particle beam, we are in the process of obtaining

a realistic electron energy distribution in the hydrogen source. For this

purpose we have developed a novel technique for solving the Boltzmann

equation. We will soon be using this technique for numerically obtaining the

electron energy distribution in a hydrogen source which contains a realistic

mixture of atomic and molecular hydrogen.
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Appendix A: Publications

During the tenure of the present Grant, AFOSR 84-0143, the following papers
were published in various refereed journals. Reprints of some of these papers
follow this report.

A. Review Article

1. "Vibrational excitation and dissociative attachment", J.M. Wadehra, in
Nonequilibrium Vibrational Kinetics, M. Capitelli, ed. (Springer-Verlag,
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1. "Mutual neutralization - three body effects"; presented at the Fourth
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4. "Vibrational excitation of diatomic molecules during resonance scattering
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Gaseous Electronics Conference, Monterey, California, October 15-18,
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5. "Elastic scattering of positrons and electrons from argon", (with Sultana
N. Nahar); presented at the 18th Annual Meeting of the Division of
Electron and Atomic Physics, Eugene, Oregon, June 18-20, 1986.

6. "Dissociative electron attachment to the isotopes of molecular hydrogen";
presented at the Thirth-Ninth Annual Gaseous Electronics Conference,
Madison, Wisconsin, October 7-10, 1986.

7. "Li production by dissociative electron attachment to Li2"; presented
at the Fourth International Symposium on the Production and
Neutralization of Negative Ions and Beams, Upton, Ne- York, October
27-31, 1986.

8. "Closed form expressions for the contributions of higher partial waves to
the elastic scattering amplitude for various long range potentials",
(with Sultana N. Nahar); presented at the 1987 annual meeting of the
Division of Atomic, Molecular and Optical Physics, Cambridge,
Massachusetts, May 18-20, 1987.

9. "Charge transfer processes during the collisions of positrons and protons
with atomic hydrogen", (with Sultana N. Nahar) presented at the 1987
annual meeting of the Division of Atomic, Molecular and Optical Physics,
Cambridge, Massachusetts, May 18-20, 1987.

10. "Elastic scattering of positrons from argon", (with Sultana N. Nahar);
presented at the Fifteenth International Conference on the Physics of
Electronic and Atomic Collisions, Brighton, United Kingdom, July 22-28,
1987.
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11. "A simple model for the resonant vibrational excitation of molecules",
(with P.J. Drallos); presented at the Fifteenth International Conference
on the Physics of Electronic and Atomic Collisions, Brighton, United
Kingdom, July 22-28, 1987.

12. "Elastic scattering of positrons from argon", (with Sultana N. Nahar)
presented at the NATO Advanced Research Workshop on Atomic Physics with
Positrons, University College London, United Kingdom, July 15-17, 1987.

13. "Positronium formation from atomic hydrogen", (with Sultana N. Nahar)
presented at the NATO Advanced Research Workshop on Atomic Physics with
Positrons, University College London, United Kingdom, July 15-17, 1987.

14. "A simple model for the resonant vibrational excitation of molecules",
(with P.J. Drallos) presented at Satellite Meeting on Electron-molecule
Scattering and Photoionisation, Daresbury, United Kingdom, July 18-19,
1987.

15. "Time evolution of electron and positron swarms in neon", (with P.J.
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7. Vibrational Excitation and Dissociative Attachment

J. M.Wadehra
With 14 Figures

The process of dissociative electron attachment to molecules is known to be one of

the main sources of production of negative ions in gaseous discharges, plasma

switches, and gas lasers. In this process, a diatomic (or polyatomic) molecule,

under the impact of an electron, dissociates into its component atoms (or smaller

molecular species) while the incident electron attaches itself to one of the cdm-

ponent products. The rate of negative ion production via dissociative attachment

can be significantly increased, for both homonuclear molecules (for example, H2)

and heteronuclear molecules (for example, HCI), if the molecule initially has

stored internal energy in the form of rovibrational excitation. Schematically,

for electron impact on a molecule AB,

e + AB - A + B_ (dissociative electron attachment),

e + AB(vi) - e + AB(vf) (vibrational excitation by electron impact).

This chapter reviews the resonance model in general and its application, in par-

ticular, to the process of dissociative attachment (DA) of electrons to various

diatomic homonuclear and heteronuclear molecules like H2, N2, CO, and HC1. It also

discusses the related problem of vibrational excitation (VE), via resonance forma-

tion, of these molecules by electron impact. No attempt will be made to present a

paper-by-paper historical view of the topics since this has been accomplished in

a number of other review articles. Rather, an attempt will be made to present the

results in as simple a manner as possible so that the present review might serve

as a starting point for an investigator new to this area. Emphasis will be placed

on the most recent results.

Some of the comprehensive review articles and books dealinq with DA are [7.1-8].

A popular account of the process of dissociative electron attachment is given in

[7.9]. The recent review articles on VE of molecules by electron impact include

[7.10-15].

191

r -N



7.1 The Resonance Model

7.1.1 Qualitative Remarks

One model that has been quite successful in explaining the DA and VE of diatomic

molecules is the resonance model, in which the projectile electron is temporarily

trapped by the target molecule. The molecular anion (or the resonant state) thus

formed has a finite lifetime and it can either autodetach, leading to VE of the

molecule or, if the lifetime is sufficiently large, it can lead to DA forming a

neutral atom and an atomic anion. Thus

- ,r A + B(DA)

e + AB(v) AB (res)A 
B

AB(vf) + e (VE)

A schematic representation of the resonance model is shown in Fig.7.1, which shows

the potential curves of the neutral molecule AB and its anion (resonant state)

AB. The two curves cross at internuclear separation R =Rs so that for R >Rs the

resonance turns into a bound state. The nuclei, initially rovibrating in state

Vi(R)

A+B

V°(R) 
A+-

) JI t ,

RC  R Rs9C

INTERNUCLEAR SEPARATION R

Fig.7.1. The resonance model. Here Vo(R) and V (R) are the potential curves of the
neutral molerjle AB and the resonant state AB-. The resonant state is formed by
capture of an electron with energy E by the molecule AB
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(viJi) under the influence of the potential Vo(R), move under the influence of

V (R) after capturing the electron. The probability of capture of an electron

with energy c depends on the internuclear separation R and, classically speaking,

it peaks at R =Rc (known as the capture radius) where V (Rc) -Vo(Rc) =c. After anion

formation, the nuclei begin to separate if the potential curve V (R) is repulsive

and begin to gain kinetic energy at the expense of electronic energy. Due to its

resonant nature, the anion, at any internuclear separation R, can autodetach the

electron leaving the nuclei in cne of the rovibrational states of the potential

Vo(R). The final rovibrational state (vfJf) that the neutral molecule achieves

depends on the kinetic energy gained by the nuclei (as indicated by the dotted

line in Fig.7.1) and on the selection rules governing the transition. If, on the

other hand, the nuclei in the anion state can separate to internuclear separations

R >Rs without autodetachment having occurred, the detachment of the electron be-

comes energetically impossible and the dissociative attachment becomes unavoidable.

The internuclear separation Rs beyond which the molecular anion becomes stable

against autodetachment is called the stabilization radius. The fact that the mole-

cular anion is capable of autodetaching the electron implies that it has a complex

potential energy curve, E'(R) =V-(R) -I ir(R). The real part gives the usual poten-

tial energy curve of the anion (as shown in Fig.7.1) and the imaginary part is re-

lated to the lifetime of the resonant anion state. This can be seen by noting that

the time dependence of the nuclear Wave function c(R) of the resonant state is given

by

so that

where r(R) is the width of the resonance, indicating that h/T is the lifetime of

the resonant state. Figure 7.1 also shows the nuclear wave function ( as a function

of R. Note that for internuclear separations R between Rc and Rs , the envelope of

JE(R)I 2 decreases with R because of the possibility of autodetachment. For R >Rs,

since the autodetachment of the electron is energetically not allowed, the width

of the resonance becomes zero and hence It(R) 2 has constant amplitude which de-

termines the croqs section for the dissociative electron attachment.

A few noteworthy points of this model are the following: first, the dissociative

electron attachment and the vibrational excitation of the molecule are two possible

decay channels, apart from electronic excitation etc., resulting from a particular

resonance state. Thus a calculation of the cross sections for the dissociative elec-

tron attachment to a molecule will provide resonant contributions (of that parti-

cular resonant state) to the cross sections for vibrational excitation of the mole-

cule as a bonus and vice versa. Second, in explaining the vibrational excitation T
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by this resonance model, it was implicitly assumed that the transition from the

resonant state V (P) to the neutral state Vo(R) after autodetachment is a Franck-

Condon transition, that is, an instantaneous transition with no change in nuclear

velocities or positions. This is a so-called local complex potential model. This is

obviously true only if the energy of the projectile electron is much greater than

the vibrational spacing. At very low impact energies or if the vibrational spacing

of the molecule is relatively large, a description of the DA and VE processes using

a nonZocaZ complex potential for the resonant state is essential since the neutral

molecule must accept only quanta of vibrational energy for its vibrational excita-

tion. Third, in the cases of some molecules it might be possible, for certain elec-

tron energies, to form more than one intermediate resonant state. Alternatively,

the resonant anion state may decay into more than one electronic state of the neu-

tral molecule. In such cases, the total width r(R) is the sum of various partial

widths -each partial width corresponding to a certain transition between the re-

sonant anion state (or states) and the neutral molecular state (or states).

During a resonance formation, the time spent by the projectile electron in the

vicinity of the target molecule is much larger -by several orders of magnitude-

than the normal transit time. For example, a 10 eV electron, normally taking

I0-17s (-a aB/velocity) to transit a molecule, might be trapped for almost 10- 14s
(..h/r) if it forms a resonance with the target molecule with an average width of

-0.1 eV. The effect of the resonance formation is then to strongly distort the

target wave function. There are several mechanisms by which the electron could be

trapped by the molecular target to form the resonant anion state. For example, on

impact the electron could excite the molecular target and thereby lose sufficient

energy to hinder its own escape. The energy of the resonant state then lies below

that of the excited target state. This is a type I or Feshbach or closed-channel

resonance. Before autodetaching, the trapped electron must gain energy by reverting

the target molecule back into its lower energy state. This type of resonance is re-

latively narrow (that is, has a long lifetime) since the trapped electron is forced

to affect the electrons of the target molecule dynamically for autodetachment to
occur. Another possibility is that the electron encounters the target in a confi-

guration of, nonzero angular momentum. The projectile electron then gets trapped in

the centrifugal potential barrier of the target from which it eventually tunnels

out. This trapping mechanism obviously depends on the shape of the potential of

the target state. This is a type II or shape or open-channel resonance.

Whatever the mechanism of the electron trapping, the lifetime of the resonance

is determined by its width. To classify the various limits of the resonances, one

has to compare the lifetime h/T of the resonance, with the average vibrational

period of the nuclei in the resonant state. If hL is the average energy of the vib-
rational quanta in the resonant state, then the condition h/F <I/ implies that

during the lifetime of the resonance, the nuclei hardly have an opportunity to
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vibrate. This is the impulse limit since the incoming electron effectively provides

an impulse to the target without staying with it for a long time. Similarly, the

condition h/r .1/u implies the compound state limit since in this case the nuclei

make a large number of vibrations during the lifetime of the resonance. Finallv,

if h/r.-/w, one has the boomerang limit. In the boomerang case, one needs to con-

sider only the interference betweten the single outgoing and a single reflected

nuclear wave. An important characteristic of the boomerang limit is that the re-

sonance width r decreases on increasing the internuclear separation R [7.16].

7.1.2 Quantitative Discussion

A quantitative analysis using the nonlocal formalism of the application of the

resonance model to the dissociative attachment and vibrational excitation of di-

atomic molecules has been given [7.17,18]. In this analysis, following Faro [7.19]

one views a resonance as a discrete state embedded in and interacting with a con-

tinuum. If q represents the totality of all electronic coordinates, including those

of the projectile, then in the Born-Oppenheimer approximation, the wave function

of the discrete state representing the resonance can be written in the product form

0(q,R)c(R). Here € is the normalized electronic wave function and is the nuclear

wave function of the resonant state. The internuclear separation R appears only

parametrically in the electronic part . The total Hamiltonian H(q,R) can be written

as the sum of the electronic Hamiltonian Hel(qR) and the nuclear kinetic energy

term TN(R),

H(q,R) = Hel(qR) + TN(R) (7.1.1)

A typical member of the set of continuum functions representing the nonresonant

scattering, in the Born-Oppenheimer approximation, is i C(q,R)xv(R). Here xv is the

vibrational wave function of the target and C(q,R) is the properly antisymmetrized

electronic wave function that takes into account all the target electrons and the

projectile electron. The energy of the projectile c is part of the total energy E;

E =Ev +c, Ev being the vibrational energy of the target molecule. It is convenient

to choose Ev= =0. Asymptotically, approaches a form that is the product of a

plane wave [with amplitude2 A(k)], representing a free electron of energy c, and

the electronic state cf the target molecule: 4asy =A(k) exp(ik-r ),el

The electronic parts of the discrete and the continuum states are orthonorma-

lized as

f dq ¢*(q,R)i(qR) = I (7.1.2a)

f dq J*(q,R)ip,(q,R) = 6( - A) and (7.1.2b)

f dq 0*(q,R) p,(q,R) = 0 , (7.1.2c)
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for all R since R appears only parametrically in the electronic wave functions.

The electronic energy V'(R) associated with the discrete state is

V (R) = f dq 0*(q,R)H el(q,R) , (7.1.3a)

and that associated with the continuum set of states is

do ,*,He,* =lJ [Vo(R) + c]6(c - c') , (7.1.3b)

where Vo(R) is the potential curve of the terqet molecule. The vibrational wave

functions satisfy

[TN(R) + Vo(R)JXv(R) = Evxv(R) (7.1.4)

The total Hamiltonian is thus diagonalized in the subspace of the continuum func-

tions,
dR f dq x*, p*.H(q,R)*X v = f dR X:,[TN + Vo(R) + c16(c - )(71.5)

= (Ev + c)6(c - E') f dR x*,xv =E6 6(c - E')

The matrix element governing the interaction between the discrete state and the

continuum states is

V(c,R) = f dq o*(q,R)H el(q,R) (7.1.6)

The complete wave function of the electron-molecule system in the configuration

interaction form can be written as

T(q,R) = o(q,R)4(R) + 1 f dc fv(c),p(q,R)xv(R) (7.1.7)

v

It is required to satisfy the Schrbdinger equation

[H(q,R) - EI (q,R) = 0 . (7.1.8)

The functional coefficients fv(E) are determined from the expression obtained by

premultiplying (7.1.8) by *(q,R)xv,(R) and integrating over all the electronic

and nuclear coordinates, that is,

f dR f dq *,*,.[H(q,R) - EIr(q,R) = 0 , (7.1.9)

along with the boundary conditions. If ×vi is the initial vibrational state of the

target molecule, then the incoming waves are possible only in the term v =v. of the

sum in (7.1.7). Substituting for T from (7.1.7) into (7.1.9) and using the incom-

ing wave boundary conditions for v =vi, one obtains

fv (E) 6 vv 6(E - EV - C) + E + f dR xvV*(c,R) (7.1.10)i E -E - + iO
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Next, the differential equation satisfied by the nuclear wave function C(R) of

the discrete state is derived from the expression obtained by premultiplying (7.1.8)

by o*(q,R) and integrating over all electronic coordinates, that is, from

f dq 0*(q,R)[H(q,R) - E]T(q,R) = 0 (7.1.11)

Again using (7.1.7) for 4, in (7.1.11), one obtains

[TN(R) + V-(R) - E]C(R) + f dR' K(R,R')&(R') = -V(E - EviR)xv'(R) , (7.1.12a)

where

K(R,R') = v xv(R)Xv (R)[A(R,R';E - E) ir(RR';E ) , (7.1.12b)

with

V( ,R)V*(c,R')v = d E - Ev - '

(where P indicates the principal value) and

r(R,R';E - Ev) = 2rV(E - Ev,R)V*(E - Ev,R' )

Equation (7.1.12a) for the resonant nuclear wave function &(R) is an integrodif-

ferential equation with a nonlocal kernel. Here, A and r are the level shift and

the level width, respectively. Some of the assumptions made implicitly in arriving

at the result (7.1.12a) are: (a) the orientation of the internuclear axis is fixed

in space so that the rotation of the molecule is of little concern, (b) degeneracy

arising from the different possible directions of the projectile electron relative

to the internuclear axis is omitted, and (c) multiplicities of the molecular states

are not considered. These assumptions were made to simplify our presentation and

it is possible to obtain the most general results by relaxing these assumptions

[7.18].

The nonlocal equation (
7 .1.12a) can be reduced to a local equation by the follow-

ing assumption. The level shift and the level width functions L and r depend on

E -EV Wh
2 k 2 /2m, which is the energy of the scattered electron when the target

molecule undergoei the transition 0-v. The assumption is that if either the elec-

tron energy is large or the vibrational spacing is small, then during the vibra-

tional excitation vi -vf the energy of the electron is not significantly changed.

Under such circumstances one can either replace Ev by Evi (that is, E -Ev by the

incident electron energy ri) or E -Ev by the local classical electron energy

(R) -Vo(R ) -hk2(R)/2m. The first choice will maintain the unitarity of the

S matrix but will give nonzero cross sections at the threshold and the second

choice will give zero cross sections at the threshold while minimizing any possi-

bility of unitarity violation [7.20]. In either case, F and A will become indepen-

dent of the vibrational quantum number v. The sum in (7.1.12b) is over all open

vibrational levels since the condition E -Ev >0 is satisfied only for open channels.
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If the contribution of all closed vibrational channels is negligible, then using

the closure property

I xC(R')xv(R) = 6(R' - R)
v 

1

in (7.1.12b), (7.1.12a) reduces to a local equation

[TN(R) + V-(R) + A(R,Li) - ir(R,ci) - E].(R) = -V(Ei,R)xvi(R) (7.1.13)

where

A(R, fdt V(=PId 2 and

r(R,Ei) = 211V(ci,R)12

Note that it is the coupling between the discrete and the continuum states that

leads to a complex potential and thus turns a discrete state into an autodetaching
resonant state. The term on the right-hand side of (7.1.13) is called variously the

electron entry amplitude or the feeding term or the source term of the resonant
state. The local equation (7.1.13) is the starting point for most of the seniempiri-

cal calculations of the dissociative attachment and vibrational excitation processes
[7.16,211. The validity and the range of applicability of the local complex potential

approach have been analyzed in detail [7.22,231. The complex potential appearing in
(7.1.13), due to the assumptions made above, does not depend on the orientation of

R but only on its magnitude. This observation suggests that x(R) and Xvi(R) in

(7.1.13) can be decomposed into partial waves to separate out the angular dependence:

IR) = ( mR)YJrmrR/R
Jrm r r rJrmr

Xvi (R) = IMi Xviji(R)YJimi(R)/R

Then &j(R) satisfies the radial equation

t2 d2 + 2Ji(J i + ) (R) + A(Ri) ir(Ri) - E) 3 (R)

= -V(Ei,R)x viJ i(R) , (7.1.14)

where Xvij, is the wave function of the initial r,'brat ioi state of the target
molecule. The resonant nuclear wave function Vj(R) is obtained by directly inte-

grating (7.1.14) subject to the boundary conditions

R= 0) = 0 , and (7.1.15a)

Vj(R -. ) -0 if E < V()

KRh(I)(KR) if E > V-(-) , (7.1.15b)



with h2K2 /2M =E -V'(-), M being the reduced mass of the nuclei and h l) the
spherical Hankel function of the first kind.

Sometimes it is convenient to use electronic wave functions k that are momen-

tum normalized rather than energy normalized as in (7.1.2b). The relationship be-

tween the two functions is

(mk/h2 k

with E =h2k2 /2m. Then, in the local formalism,

r(R,c) = (2wmk/h 
2 )IV(k,R) 1

2

where V(k,R) is the electronic coupling matrix element evaluated by using the mo-

mentum-normalized electronic wave functions. A summary of the properties of the

energy-normalized and the momentum-normalized continuum functions is given in the

appendix to this chapter.

7.1.3 Cross Section for Dissociative Attachment

The cross section for the process of dissociative electron attachment

e + AB A + B

is obtained by comparing the flux of the outgoing ion-atom pairs with the flux of

the incoming electrons E7.24]. The quantum mechanical expression for the flux

density associated with a wave function p is

J = (h/m)Im{I*V*)

For R--o, the total outward flux of the ion-atom pairs scattered per unit solid

angle is

This flux should be averaged over the orientation of the molecule since the direc-

tion of A is random. Thus the net outward flux becomes

K 12 22 IhK

~-IdR " I&(R)! R - -v jg k( R) 1

where VR) is the solution of (7.1.14) and J is the total angular momentum of the

resonant state. The incident electron flux density is A2(k.)hk./m, where A(k), the

amplitude of the plane wave representing the electron, is (1/8,3)1/2 or (mk/8'3h2 )1 /2

for momentum-normalized or energy-normalized functions, respectively. The cross sec-

tion for dissociative electron attachment then becomes
1 m I hK 2

DA 1 mi _ K lim Ij3 (R) 2 (7.1.16)
A tKi) I R
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7.1.4 Cross Section for Vibrational Excitation

As a prelude to deriving an expression for the cross section for the vibrational

excitation of a molecule

e(ki) + AB(vi) - e(kf) + AB(vf)

we observe that the total electronic Hamiltonian can be written as

H T + (7.1.17a)Hel 2 Hel + e~r +eT•.

where HTel Te , and VeT are, respectively, the electronic Hamiltonian of the target

molecule, the kinetic energy of the projectile electron, and the interaction be-

tween the electron and the molecule. When the electron is far away from the target

(that is, VeT-O), the initial wave function of the system is
iki.

= A(ki)e r1 el Xvi asySt Xvi  i Xv i

where el is the electronic wave function of the target and A(ki) is the amplitude

of the plane wave representing the noninteracting projectile electron. Similarly,

the final wave function after vibrational excitation is

T= A(kf)ef e : asy

f t Xv Ev vf

The target electronic wave function satisfies

[HT - VO(R)], = 0 (7.1.17b)

Conservation of energy implies

E 2 k2 h'kf
=vi vf 2

The total cross section for vibrational excitation is [7.25]

k f2
Ov v = kf dkflT ,f

1 f i

where the transition matrix element is
- Tifes Tn r

T i  f dR f dq 'f=eT re 
+ e nr

with

m 1
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Recall that A(k) is (1/8;3)i/2 and (mk/8 h2 ) /2 for momentum-normalized and energy-

normalized continuum functions, respectively. The resonant and the nonresonant part

of the matrix element are, using (7.1.7),

T re s  f dR f dq F*VT.
i-f "f eT¢
Tirf =. J dR J dq 4VT( ncv

In the following discussion, it will be assumed that there is no interference be-

tween the resonant and the nonresonant scattering amplitudes and only the resonant

part of the excitation cross section will be considered. Now, using (7.1.2c,17b,6),

"Tes =-Wf dR f dq '4[He - T
- Te] 0

=,W f dR X* V*(Ef,R)c
vf

The direction of the outgoing electron appears only in the coupling matrix element

via the plane wave exp(ikf.r). If the Lth partial wave in the expansion of this plane

wave is the lowest term providing a nonzero contribution to the coupling matrix

element and if one makes the approximation of retaining only this leading term, then

the matrix element can be written as

V(cf,R) = Vf(R)YLm(kf)

Vf dk~V(~SR)I2 1/2
where V=[f dkfIV(If,R) I is independent of the final direction of the electron.

Then if J is the final rotational state of the molecule,

T fe =-YLm(kf) f dR * *
0 f

The function Cj(R) can be expressed in terms of an integral over the Green's func-

tion G(R,R') corresponding to the operator on the left-hand side of (7.1.14)

Vj(R) - f G(RR')Vi(R')YLm(ki)xvJ(R')dR'
0

The resonant contribution to the cross section for vibrational excitation now be-

comes

fres kif2 1 2Ores -- (k ) dR f dR' Xv j(R)Vf(R)G(R,R')Vi(R')xi(R ') 2

0- m i 0 vf

This expression for the VE cross section should be averaged over the direction R

of the molecular axis with respect to the fixed direction of the incident electron

beam. Equivalently, one may average over ki while holding R fixed. The final ex-

pression for the VE cross section is
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res -kf M 2 1 1
1if k A 2 (2 (k i)A 2 (kf) 47Y

dR 7 dR' X~v VfG(R,R')Vixv 2 (7.1.18)
0 0 f

7.1.5 Semiclassical Approximation

The cross sections for both dissociative attachment and vibrational excitation in-

volve the continuum ion-atom wave function j(R) which is most easily obtained by

numerically solving (7.1.14). However, the physical nature of the processes in-

volved, within the resonance model, becomes most evident if the semiclassical ap-

proximation is used for Ej(R) [7.261. The WKB approximation to Cj(R) contains a

f a c t o r R

exp -Ims (f [E - V2MR) - A(Rc.) ir(Rc))-z - 'R- hIRo) )  dy

where z is the complex classical capture radius:

,E= V-(z) + 6(z,ci) - ir(z,Ei) - Vo(z)

For a narrow resonance (small r), this factor (on neglecting L) reduces to

ex (1s .p v(R) [-VR
V PM M

c

so that for the case of a narrow resonance, the attachment cross section can be

written as the product

DA capS (7.1.19)

The first factor is interpreted as the cross section for the formation of the

resonant state by electron capture. The second factor

S = exp(- Rs4K d
Lvo

c .

the so-called classical survival factor, is the probability that the nuclei in the

resonant state separate from R c to Rs without autodetachment, that is, the probabi-

lity that the resonant state survives long enough to assure the occurrence of disso-

ciative attachment.

The Green's function appearing in the vibrational excitation cross section can

be written as G(R,R') =U,(R,)U2 (R>)/W, where U, and U2 are the solutions of homo-

geneous part of (7.1.14) and W is the corresponding Wronskian. The cross section p

for vibrational excitation can now be written as 17.271
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res li2 1f2
ai f = "constant" I2i f , (7.1.20)

where all the normalization constants and the kinematical factors have been ab-
sorbed in the "constant" and Ii and If are thE inteIgrls

I R s Ul(R)*(R)iJ(R)dR  f

0
RIf fs U -(R)V;(R)X j(R)dR
0f=j U2 (R) Vf(R)xvf~dR

0 f
These can be easily evaluated by using the WKB approximations for U1 and U2 . The
first factor iIi12 in the VE cross section is the probability of the formation of

the molecular resonant state when the neutral molecule is initially in the ith
vibrational level. This factor is proportional to aca p. The second factor JIf2 is
the probability that the resonant state autodetaches leaving behind the neutral
molecule in the fth vibrational level.

7.2 Applications to Specific Molecules

In the following discussion, vibrational excitation and dissociative electron attach-
ment to some specific homonuclear as well as heteronuclear diatomic molecules will
be reviewed. The threshold energy for the electron attachment process, e +AB -A +B
depends on the dissociation energy (D0) of AB and on the electron affinity (EA) of

B: EDA=D -EA At higherth 00 incident electron energies, the negative ions can also
be produced by the process of polar dissociation (PD). In this process also, the
molecule AB dissociates under the impact of the incident electron. However, both the

dissociating fragments are charged rather than neutral, that is, e +AB -e +A+ +B.
The threshold energy for this process obviously depends on the ionization potential

(PofA PD =DDA and EPD for someth 00 -EA +IP. Table 7.1 provides the details of Eth a th

simple diatomic Qiolecules [7.28-301.

The shape of the electron attachment cross section as a function of the electron
impact energy depends on the nature of the potential curve V -(R) of the resonant
molecular anion. If the anion curve is attractive in nature, the attachment cross

section shows a vertical onset with a peak at the threshold [7.17,31]. If the anion

curve is repulsive, the attachment cross section, above the threshold, increases
gradually to a peak. In the case of a heteronuclear molecule AB there are two thres-
holds for attachment corresponding to the possibility of either A- or B- formation.
Table 7.2 shows the peak cross sections, just above the threshold, for attachment

to various molecules at room temperature [7.32-35].
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Table 7.1. Threshold energies and relevant quantities for dissociative electron
attachment and polar dissociation of various diatomic molecules

Atom EA [eV]a IP [eV ]
b

H 0.7542 13.60
N <0 (-0.07) 14.53
Cl 3.615 12.97
C 1.268 11.26
0 1.462 13.62

Molecule D [eV]c  E EA [eV] (products) E00 h eEth ei(rdcs

H2 4.478 3.724 (H + H-) 17.32 (H' + H')

N2  9.759 9.759 (N + N + e) 24.29 (N+ + N + e)

CO 11.09 9.628 (C + 0-) 20.89 (C' + 0-)

CO 11.09 9.822 (C- + 0) 23.44 (C" + 0+ )

HCl 4.433 0.818 (H + Cl-) 14.42 (H+ + Cl-)

HCI 4.433 3.679 (H- + Cl) 16.65 (H- + C3+ )

a[7.28]; b[7.29]; c[7.303

Table 7.2. The peak cross sections for dissociative electron attachment to various
diatomic molecules

Molecule Negative ion formed Peak attachment cross Ref.
section [cm2]

H2  H- 1.8 (-21) a  [7.32]
N N (autodetaching) 2.5 (-18) [7.33]
c6 0- 2.0 (-19) [7.34]
CO C- 7.0 (-23) [7.34)
HCI Cl 2.68 (-17) [7.35]
HCl H 2.05 (-18) [7.351

a1.8 (-21) = 1.8×I0- 2 1

7.2.1 Molecular Hydrogen

a) Re onance8

Atomic hydrogen has a stable anion H- with configuration Is2. The lowest g and u

states of the hydrogen molecular anion, namely the 2 + and states that disso-

S2 g
ciate into H(ls) +H-(1s ), are true bound states for asymptotically large inter-

nuclear separations R. However, for small values of R, the states (l 2 (1) +
and (lag)(l) 2 are the lowest resonant states of H Calculations of the

an (glu) 9g 2+ H2. Caclain ofth1+

resonant states show [7.36,37] that iu is a shape resonance, with the X z g state

of H2 as its parent, for internuclear separations RA3.0 a.u. and that it turns into

a bound state for larger values of R. This resonance is mainly responsible for the

sharp threshold peaks in the dissociative attachment cross sections. The 21+ state
g

of H2, on the other hand, is [7.37] a shape resonance for R< 5.1 a.u. with the

204

I.

4'~~ ,~' - - ~ r m *- t



(1Og)(lou) 3 u state of H2 as its parent; it is an electron-excited Feshbach re-

sonance in the approximate range 5.1 a.u. R ;.5.3 a.u. of internuclear separations

lying just below the repulsive (1og)(1ou) 3 state of H and it is a bound state9 u stt fH 2 anitiabodsae

for larger values of R. This resonance contributes strongly to the attachment cross

sections and to excitation of higher vibrational levels of the ground electronic

state 1z+ of H in the energy range 6-13 eV [7.381.

In the energy range 11-14 eV, information about the resonant states of H2 has been

obtained [7.39] by investigating the energy-loss spectrum for the scattering of elec-

trons by H2 and 02. The differential cross section plotted as a function of the

incident electron energy for various fixed energy losses (corresponding to the exci-

tation energy of various vibrational levels of the ground electronic state of the

neutral molecule) in both H2 and D2 provided two series of peaks. These series have

energy spacings of 0.3 eV and-0.15 eV and have been designated series a and series

b, respectively. The peaks of series b appear only in the high vibrational exit

channels. The energy dependence of the differential cross sections for D2 at smaller

scattering angles (S70 ° ) exhibited a further series of peaks which was labeled series

c. The energy spacing of peaks in series c is very similar to that in series a. These

three series of peaks were attributed to the vibrational levels of the excited re-

sonant states of H2 . In fact, by studying rovibrational excitation of the ground

electronic state of H 2 occurring via these resonant states, it was possible to es-

tablish the symmetry of the resonances [7.40]. It was tentatively concluded that1 2 2 , 1- g i - 2 *g an2_ u
the series a, b, and c belonged to the 1r:g Ig, 21 1 and 1r IT 27
2u 9 g u g g uelectronic states of H2 . It was later argued [7.41] that the series c could be-

long to a resonance with the configuration IT 2 (same configuration as for series

a) and symmetry 2Lg. The fact that both the series a and c have similar vibrational

energy spacing was taken as supporting evidence for the corresponding resonances

having the same electronic configuration. Calculations of the potential curves of

the resonant states of H2 in the energy range 11-14 eV indicates [7.37] that series

a starting at 11.32 eV with a spacing of 0.3 eV could originate from the resonant

state A 2+ with a mixture of configurations 1-' 2r2 and Ic 1- 2 Series c, pos-S g g 'usibly starting at 11.19 eV with the same vibrational energy spaciric of 0.3 eV,
2-- resonant state or tc the I 1- 2 2,might belong either to the 1 g 2cg u 2 u g u g

resonant state. The first designation (TU ) is favored by calculations of the

resonant potential curves since the minimum of the 2, curve appears to be toog
high in energy (- 11.5 eV) to account for the 11.19 eV starting point of the series.

The second designation (2, ), however, is deemed likely as a reslt of the moreg
recent experiments [7.42] in which dissociative attachment occurring via higher

vibrational levels of the 2 resonant state is apparently observed and it is sug-
g 2,

gested that the minimum of the ,_ curve might lie lower in energy than calculated.The~ exsec fa2+ g
The existence of a 2+ resonance leading to the b series has also been experi-g

mentally confirmed [7.43]. However, not much further informatior seems to be avail-
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13 to Fig.7,2. Potential curves of
Ci, W2. H*H-(0I) the ground and some excited

electronic states of H;. The
H(I,) H(3f)- dashed curve is the potential
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able for series b. In fact, even the configuration of the electronic resonant state
2z+ responsible for the b series does not appear to be firmly established.
g
A correlation diagram for various resonant states of H2 in the energy range

11-14 eV has been proposed [7.42,43]. The dominant configuration of the A 2_

resonance, which presumably is responsible for the a series, is I- 22 and it
dissociates into H(Is) +H-(2s2). The states l2 2 1 aA which

g g g u *g'
are possibly responsible for the c series, dissociate into H(ls) +H (2s2p) and

H(1s) +H-(2p 2), respectively.

Finally, the real part of the potential curves of some of the resonant states

of H2 [7.37] along with the potential curve for the ground electronic state of

H2 [7.441 are shown in Fig.7.2. The energy difference between the potential curves

of the ground state of the neutral molecule and a particular resonant state, in the

Franck-Condon region, is sometimes referred to as the energy of the resonance. As
an example, the energy of the X 21 u and the B 24 resonances of H are approxima-

tely 3.7 eV and 10.5 eV, respectively. The energetics of the potential curves imply,
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for example, that at an incident electron energy of -9-11 eV the major contribution

to the cross sections for the dissociative electron attachment as well as the vib-

rational excitation comes from the B 2+resonance.

A somewhat superficial but easily understood approach is to think of the cross sec-

tion for the vibrational excitation of a molecule as made up of two parts-a re-

sonant part and a nonresonant (also potential or direct) part. A complete calcula-

tion of the vibrational excitation cross section should take into account both the

resonant and the nonresonant contributions. The nonresonant part of the cross sec-

tion is usually a smoothly varying function of the projectile energy. For any mole-

cule it is possible to obtain the resonant contribution to the excitation cross

section by using a resonance model in which an intermediate molecular anion resonant

state is formed. For this purpose, one needs to know the complex potential energy

curve of the resonant state. This can be obtained either by a separate ab initio

calculation or by a semiempirical fit of some selected experimental data to the

potential parameters. Close to the resonance energy, the resonant contribution to

the excitation cross section can overwhelm, sometimes by orders of magnitude, the

nonresonant part, while away from the resonance energy the resonant contribution is

only a small fraction of the total excitation cross section. The overall excitation

rate is then usually dominated by the resonant contribution. Alternatively, one

could use various parts, static, exchange, polarization, etc., of the electron-

molecule interaction to calculate low energy phase shifts and to obtain the rele-

vant transition matrix elements either directly or by summing over various partial

waves to calculate the excitation cross sections. If all the important parts of

the interaction are taken into account properly, a resonance can reveal itself by

making the phase shift of one of the partial waves, the one which leads the resonance

formation, much larger than the other phase shifts [7.45].

The resonance contribution usually appears in the form of a bumplike structure

in the excitation cross sections. ]f the resonance is short-lived (impulse limit),

then during the lifetime of the resonance there is hardly any possibility of a nuc-

lear wave packet reflecting at the turning points and the structure in the excita-

tion cross sections is just a smooth broad bump. On the other hand, in the case cf

a long-lived resonance (compound limit) with an attractive curve, there is signifi-

cant interference between the incident and reflected nuclear wave packets, which

appears in the excitation cross sections [7.10] as a bump with substructure, cor-

responding to the vibrational levels of the resonance state.

Figure 7.3 shows the energy-loss spectrum of H2 taken at 140 with 10.5 eV elec-

trons [7.46]. The elastic peak at zero energy loss is normalized to 1. The energy

separation between the peaks corresponds to the vibrational spacing of H2. The ratio

of the peak intensities gives the relative magnitude of the vibrational excitatior
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cross sections for the incident electron energy of 10.5 eV. The important point is

that at this incident energy, the vibrational excitation cross sections 7Ov relative

to the elastic cross section r00 decrease with increasing v by almost an order of

magnitude for small v (v =1,2,3) but become almost constant for large v (v - 9,9,10.

This is a clear indication that the resonance responsible for the excitation of

lower vibrational levels is different from the resonance responsible for excitation

of the higher vibrational levels. This fact is also evident from Fig.7.4 wnere the

individual contributions [7.38] of the lowest two (namely, 2 + and 2+) resonancesu g
of H2 to the vibrational excitation cross sections are shown, along with the e -

perimental results [7.47,48]. Note that for incident electron energy -10 eV, -01
24

and are essentially dominated by the resonance while a tendency exists for

the L resonance to dominate the excitation of higher vibrational levels. The ab

initio calculations [7.49] of the vibrational-excitation cross sections at low im-

pact energies (c 10 eV) also agree with the experi.,-nts.
The excitation of higher vibrational levels can also be achieved very efficiently

by a nonresonant process in which higher electronic states of the H, molecule are

populated first by electron impact. The higher singlet electronic states will ever-

tually decay radiatively leading to the repopulation of the vibrational levels of
the X IT+ state of H Above the threshold (-20 eV) the cross sections for vibra-

g 2.
tional excitation (vf 3) of H2 via electron collisional excitation of the higher

singlet states can be orders of magnitude larger than the resonant cross sectiorn

shown in Fig.7.4 [7.50].
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Fig.7.4. Contributions of the

two lowest resonant states to
the vibrational excitation
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The production of H ions by electron impact on H2 is caused either by the process

of dissociative attachment,

e + H - H+H
2

or by polar dissociation

e+H H+ + H- +e

Below an electron impact energy of 17.2 eV, polar dissociation of H2 is energetically

not possible and negative ions are produced only by dissociative attachment. A glo-

bal view of the H production from H2 in the lowest vibrational level of its ground

electronic state is shown 17.5]] in Fig.7.5. The structures around 3.5-4 eV and

8-12 eV are dominated by the 2Lu and the 2z+ resonances of H2 , respectively. The

sharp peak around 14.2 eV is caused by the higher resonances [7.52] which result

in dissociation into H* +H-. In fact, substructures corresponding to the vibrational

levels of the higher resonant states have been observed [7.42,53] on the high-ener-

gy side of both the 10 eV and the 14 eV peaks.

Recent observations [7.54] of H- production from H2, in the energy range 1-5 eV,

have revealed a dramatic increase in the attachment cross sections if the attachino
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Fig.7.5. A global view of H"
production from H2 by elec-

tron impact. From [7.51)
H-/H 2  with permission
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H2 molecule is rovibrationally excited. For example, an increase of four orders of

magnitude in the cross section is observed if H2 is excited from v =0 to v =4 and

a fivefold increase for J =0 to J =7 excitation. These experimental observations

can be completely accounted for within the resonance model by using semiempirical

fits to the relevant potential curves of H2 and H2. These theoretical results [7.21,

38] are compared with experimental observations in Fig.7.6. The enhancement of

the cross sections essentially arises from the 2z+ resonance of H2 which is a short-u 2
lived resonance with an average width of about 8 eV. Figure 7.7 shows [7.55] the

individual contributions of both the 2 + and the 2+ resonances of to the disso-

ciative attachment cross sections. The 2Z+ resonance, which dominates the attach-g
ment around 10 eV, does not exhibit a dramatic enhancement on vibrationally excit-

ing the molecule. The 2+ contribution shows peaks which arise from the oscilla-
9

tions in the vibrational wave functions of H2 . This structure, which is apparently
.4

related to the Condon diffraction bands [7.56], clearly indicates that the

resonance has a longer lifetime (and hence a smaller average width) than the g22.
u

resonance. This fact is indeed supported by the calculations [7.57).

The attachment rate at low electron temperatures is also essentially determined

by the contribution of the 2L+ resonance. The attachment rate is of course drama-
u

tically increased if the attaching molecule has internal energy (in the form of ro-

vibrational excitation) built into it. At low internal energies, vibrational exci-

tation is more effective in enhancing the attachment cross sections and rates than

the rotational excitation, however, at high internal energies, the enhancement is

bisically determined by the total internal energy and not by its exact partitioning

between the vibrational and rotational modes [7.58]. This strong enhancement of the

attachment process on increasing the internal energy of the molecule is attributed

to an increase in the range of internuclear separations over which the electron
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Fmg.7.6. Internal energy dependence of the threshold cross sections for electron
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Fig.7.7. Contributions of the two lowest resonant states to the dissociative elec-
tron attichment cross sections for various rotationless vibrational levels of H2.

9+ (---: .+ From [7.55] with permission

g u

capture can occur. This increase occurs because of the larger amplitude of vibra-

tion for vibrational excitation and because of the centrifugal stretching of the

molecule for rotational excitation.

The ground electronic state of H2 supports at least 294 rovibrational levels.

An investigation [7.59] of the contribution of the 2<. resonance to attachment to

all these levels of H2 revealed that the maximum possible rate of electron attach-
-28 3 -

ment to the ground electronic state of H2 is about 10 cm s and, furthermore.

that the average energy carried by the H ions is almost always less than 0.5 eV.

From Fig.7.2 one notes that the real part of the potential curve of the lu

state of H2 is slightly attractive, while that of the 2<9 state is always repulsive.

It has been argued [7.17,31) that, in general, an attractive resonance curve will

result in a vertical onset of the attachment cross section at threshold while a re-

pulsive resonance curve will give a gradual buildup of the cross section at tne

threshold. This behavior at the threshold in attachment cross sections is clearly

noticeable in Fig.7.7 in the cases of the 2:u and the 2+resonances of H2
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Anomalously large densities of H- ions observed [7.60] in a hydrogen plasma can

be attributed to the production of these ions by dissociative electron attachment

to either the ground electronic state or possibly to the excited electronic states

of H2 [7.61].

d) lsotopc Effect

One can study the isotope effect for dissociative attachment and vibrational exci-

tation by replacing either one or both of the nuclei by their isotopes. The effect

is most striking for lighter molecules like hydrogen because of the greater change

in the reduced mass on isotope substitution. It is observed [7.32,52] that the

cross section for the production of H from H2 exceeds that uf D from D2 by several

orders of magnitude. However, ignoring the magnitude, the qualitative behavior of

D production from D2 is essentially similar to H from H2 . Table 7.3 provides

cross sections, near threshold, for attachment to H2 and 02 in various rovibrational

levels. This isotope effect in regard to the dissociative attachment can be under-

stood [7.62] within the resonance model by noting, from the semiclassical expression

(7.19) for the attachment cross section, that the classical survival factor

R

c

is a strongly mass dependent quantity. In fact, S can be approximated by exp(-7/h)

where T, the time taken for the separation of the nuclei to increase from the cap-

ture radius R to the stabilization radius Rs (see Fig.7.1). is inversely propor-

tional to M1/5, due to simple kinematical considerations. Thus nuclei of D2, takino

longer than nuclei of H2 to separate out to PS, experience a stronger competition

from autodetachment which, in turn, reduces the probability of dissociative attach-

ment.

It has been theoretically predicted [7.63] that the contribution of a short-lived

(that is, impuIse limit) resonance to the vibrational-excitation cross sections COv

behaves as M v/2 At low impact energies ( j 5 eV) the dominant contribution to the
2-+

excitation of the low vibrational levels of H2 and D2 comes from the .u resonance

which is a broad, short-lived resonance. Both the experimental observations [7.54]

and the theoretical calculations [7.38] indeed show c Oy (D2) r--2 Ov (H2) for

v =1,2,3.

7.2.2 Molecular Nitrogen

It is rather curious that even though N2 could be safely considered, in electron-

molecule collisions, as the most investigated molecule, the complex potential ener-

gy curves of the first few resonant states of N2 have not yet been established over
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Table 7.3. Dissociative electron attachment cross sections near threshold for various

rovibrational levels of H 2 and D02

v H 2  2 0 2
E [eV) a DA (cm I E [eVI "DA [cm2 ]

0 0 3.73 1.6(-21)'3 3.83 3.0(-24)
o 1 3.7 1.7(-21) 3.80 3.3(-24)
0 2 3.70 1.9(-21) 3.80 3.4(-24)
0 3 3.65 2.3(-21) 3.78 3.9(-24)
0 4 3.60 2.8(-21) 3.75 4.5(-24)
0 5 3.53 3.7(-21) 3.70 5.7(-24)
0 6 3.45 5.0(-21) 3.68 6.8(-24)
0 7 3.35 7.2(-21) 3.63 8.8(-24)
0 8 3.25 1.1(-20) 3.58 1.2(-23)
0 10 3.13 2.2(-20) 3.43 2.2(-23)
0 15 2.38 3.2(-19) 3.03 2.0(-22)
0 20 1.63 5.5(-18) 2.55 2.5(-21)
1 0 3.23 5.5(-20) 3.45 1.5(-22)
2 0 2.73 8.0(-19) 3.08 3.3(-21)
3 0 2.28 6.3(-18) 2.75 4.2(-20)
4 0 1.85 3.2(-17) 2.43 3.6(-19)
5 0 1.45 1.1(-16) 2.10 2.2(-18)
6 0 1.08 3.0(-16) 1.80 1.0(-17)
7 0 0.73 4.5(-16) 1.53 3.3(-17)
8 0 0.40 3.5(-16) 1.25 9.6(-17)
9 0 0.13 4.8(-16) 1.00 2.3(-16)

10 0 0.75 4.1(-16)
11 0 0.53 3.8(-16)
12 0 0.30 3.7(-16)
13 0 0.10 4.6(-16)

a1.6(-21) =1.6 1-2

the complete range of internuclear separations R. In fact, the lowest resonance of

N2  namely, the 2 T resonance at about 2.2 eV, has been traditionally used [7.16,25,

64-661 for testing many new ideas. The electron affinity of atomic nitrogen is

slightly negative (-0.07 eV) indicating that N is an unstable anion capable of

autodetaching the electron. The ground and the first excited electronic states of

N 2, dissociating into N ( aS) + N ( 4S), have configurations

i2 i 2  2 2 4 32 x1 i an
1-g uC 2 g u u13 g g n

1,3 9 1,:; 2c 2c~ I-n 3c 9 1
7 g A'

The two lowest resonant states of N 2, dissociating into N( 4S) +N 3 P), are then

obtained by adding an extra electron in the valence orbital - g' that is,

1C. 2 Ij2 2c. 2 2,- 2 1,4 3c2 1-X2 ad
g U *g u u g g- g

1, 11 2c- 2 212~ I-3 3(2 i- 2 A 
2

g U g U U g 9 u
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The configuration and structure of these two resonant states of N2 are quite simi-

lar to the X2 i and B2, states of the isoelectronic molecule NO (7.67].

Quite a few calculations have been made [7.16,66,68] just to establish the elec-

tronic resonance parameters of the 2F. state. These calculations, by their very na-g
ture, provide reasonable values of the complex potential curve only in the vicinity

of the equilibrium internuclear separations. The only calculation [7.69] of the ab-

solute values of the potential curves of N , available over an extended range of

internuclear separations R, is not able to correctly fix the N curves relative to
the X + curve of N. In Fig.7.8 these resonant curves for the X : and the A

g 2 u
states are shown over a large range of R and compared with the ab initio curves of

theX I + and A3t + states of N2. The N2 curves in Fig.7.8 are positioned so that theg u 2 2
potential minimum of the T curve matches that of the more elaborate ab initiog
calculation [7.66] done only in the vicinity of the equilibrium internuclear separ-

ation. The X2 F, and the XIT + curves shown in the figare cross at 1.48 A which is
g

larger than the internuclear separation at which the ab initio curves are seen to

2 , , , ,

N(
4

S) N-'(P).9.83 eV

N(4S)*NC),9.76 eV_

4 15

"-. .

10

2-2

Ix'

4x IV +

"-i zu Fig.7.8. Potential curves
of the lowest two elec-

o v0-#' troric states of N2

0.6 1.2 16 2.4 3.0 6 V and N2
R (R)
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cross. Interestingly, however, the curves in Fig.7.8 indicate that the A 2 stateU

of N turns into a true bound state for 1.8 A.SR.t2.5 A. It has also been argued
22

independently [7.70] that this bound state behavior of the 2T' state exists over
u

a larger range of internuclear separations than the one shown in Fig.7.8.

In the case of nitrogen, the lifetime of the lowest resonance, 2: is comparatle

to the vibrational period of the nuclei in N2 . This is an example of the bcomerang

limit of the resonance model. The strong interference between the initial and the

single reflected nuclear wave packets results in spectacular peaks in the energy

dependence of the vibrational excitation cross sections 7.10,71]) at low impact

energies (< 4 eV). The positions of these peaks shift to higher energies for exci-

tation to higher vibrational levels. More than forty clearly resolvable peaks in the

cross sections are observed for excitation from v =0 to v =1 -7 levels. A gloual

view [7.10] of the vibrational-excitation cross sections of N2 in the energy ranoe

I to 30 eV reveals at least three iroad maxima at electron impact energies larger

than 7 eV. The broadest and the largest of these maxima extends from roughly 15 eV

to 30 eV.

A number of calculations have been carried out to explain the positions and the

shifts of the peaks at low energies in the experimental vibrational excitation

cross sections. These include an ab initio close-coupling hybrid calculation '7.64),1

a calculation using the R-matrix formulation [7.651. and calculations using the

resonance model with both ab initio [7.66] and semiempirically fitted parameters

[7.25] for the complex resonance potential curves. Various calculations dif'er in

computational complexity, however, all calculations are able to reproduce at least

qualitatively, and in some cases even quantitatively, the experimentally cbse-ved

peaks in the excitation cross sections.

The essential difference [7.72] betweer the ab initio hybrid theor-y apprcach

and the resonance model approach lies in the choice of the basis functions uoeo for

representing the electron-molecule system (with N 41 electrons). In the hybrio

theory, the -system wave function is expanded, in a close-couoling manne-, in te'ms

of the complete set of v,brational states of the N-electron target mo.lecule. In

the boomerang model, on the other hand, the system wave function is written in terms

of the electronic-nuclear wave functions of the (N +1)-electron resonant state. i
f

carried to completeness, either procedure would provide the same, and presunmably

the exact, result. However, computer limitations necessitate the truncatior. of the

basis set which forces a finite number of N-electron functions, in the hybrid

theory, to mimic the behavior of the (N +1)-electron system. For this r-xscn, even

though the hybrid theory takes the complete physics of the process int( -ount.

the rate of convergence in the calculations using this theory is quite slow. [7.64].
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Thereo're, in processes like the vibrational excitation of N2 around 2-3 eV, wnere

a resonance formation is evident, the resonance model approach will clearly give

more rapidly converging results.

As mentioned earlier, an important feature of the boomerang limit of the re-

sonance model is that the resonance width is a decreasing function of the inter-

nuclear separation R [7.16]. After resonance formation, the nuclei separate out

until a reflection occurs at the outer turning point. Now as the nuclei come closer

together, the resonance width increases and the resonance lifetime decreases with

the net result that the resonance effectively "dies out" leadino to the autodetach-

,lent of the electron or the vibrational excitation of the molecule. Thus it is the

interference between the single incident and a single reflected nuclear wave in the

resonant state that leads to the shifting peaks in the vibrational-excitation cross

sections.

In two separate endeavors [7.25,66] the resonance model has been used to calcu-

late the cross sections for the vibrational excitation of N2 at low energies. In

one case, the resonance pdrameters-the electronic potential curve of the molecular

anion and its resonance width -are obtained from an ab initio calculation. In the

other case, a semiempirical approach is used in which about half-a-dozer, parameters

are adjusted to obtain agreement with a selected subset of the experimental data.

Either calculation is able to reproduce almost all of the peaks in the excitation

cross sections. Figure 7.9 shows a comparison of the experimentally observed ex-

citation cross sections [7.71] with those obtained by the semiempirical resonance

model approach [7.25]. It is interesting that even though the ab initic resonance

parameters differ substantially from the semiempirical ones, both sets of parameters

provide similar results for the vibrational-excitation cross sections. This clearly

suggests [7.73] that there may not be a unique set of resonance parameters which

lead to the correct cross sections.

* Theory

o .Experiment

M
. V: , V=7

V-6--~ ~ ~ r " 1 , . ....
V=5

' Fig.7.9. Relative cross

V.=V sections for vibrational
e xitation of N2 .. :

2 experiment [7.713 .

S .,theoretical results 17.21.

'0. 1.5 2.5 3,5 4 0.5 f.5 2.5 3.5 45 From 7.25] with p2-'lis-

Incident energy leVi sion
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The peak in the vibrational excitation cross sections in the energy range 15 to

30 eV is quite broad; its full width at half maximum is larger than 5 eV. It is pro-

posed [7.74] that this broad peak arises from a shape resonance which corresponds

to the trapping of the incident electron in the 3cu molecular orbital.

c) "rssociative Attac "

The ground state of the atomic anion N( 3P) is an autodetaching state. Thus the

traditional process of dissociative attachment which would normally lead to a stable

atomic negative ion is not possible for N2. However, an analogous process, via the

formation of an intermediate molecular resonant state, is possible for N2 which re-

sults in the dissocadtion of the molecule plus a free electron with kinetic energy

equal to the magnitude of the atomic electron affinity (-0.07 eV). This process is

appropriately termed [7.33] "resonant dissociation by electron impact". Schematically

e + N2 - N2 (resonance) - N(4S) 4 N_( 3 P) and

N( 3p) _ N(4 S) + e

That the dissociation is indeed occurring via the formation of N-(3P) has been

confirmed [7.75] by studying the energy distribution of the emitted electrons. This

energy distribution is observed to be independent of the incident electron energy

and is essentially determined by the energy and the lifetime (or the width) of the

N-(3 P) resonant state. The measured current of the ejected electrons indeed peaks

at the residual electron energy of 0.07 eV. Also, the molecular resonance respon-

sible for N-(3P) formation is argued [7.75] to be the 2 u state of N2.

Both the differential and the integral (or total) cross section for "dissocia-

tive attachment" to N2 have been measured 17.33,701 and are seen to be compatible

with the calculations [7.70] of the same using the local resonance model. Figure

7.10 shows the total cross section for production of N atoms from the reaction

e +N2 -N +N +e (0.07 eV) as a function of incident electron energy. The resonance

model calculations can, of course, be extended to determine whether the attachment

cross section is dependent on the initial rovibrational state of the neutral mole-

cule. Unlike hydrogen, the effect of temperature on the cross section for attach-

ment to N2 is not very dramatic. An increase by at most a factor of four of the

attachment cross section is predicted [7.76] if the molecule is vibrationally ex-

cited from v =0 to v =4. An estimate of the dissociation rate suggests [7.33] that

the resonant dissociation mechanisrr could be an important source of superthermal

N atoms from N2.
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II * I ' Fig.7.1O. Total cross section

e N-(N )-N-N-e(O.O7) for production of N atoms

0..OTeV (chad c)e ) from the reaction
o N ATOM ENERGY eV) e +N 2 -(N2*) -N +N +e (0.07 eV)

"F 0.5 1.0 as a function of incident elec-
tron enerqy. From [7.33] with

0 - permission
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7.2.3 Carbon Monoxide

a) Resonncezo,

Some information about the resonances of CO could certainly be gleaned from the

resonances of the isoelectronic system N . However, unlike N2 , it is possible, in

the case of CO, to obtain two stable negative ions, C and 0. The lowest-energy

state of CO, dissociating into C( 3P) +O(3 P), has the configuration

(Cls)2(As)2(c2s)2(,*2s) 
2 (-,2p)

4 ( 2p)
2

which in the united-atom limit can be expressed as

(1sc) 2 (2so) 2 (2pz)2 (2pr) 4 (32s2(3p) I+

[The standard notation [7.77] of an asterisk is used to indicate an antibonding

orbital.] The next vacant orbital is the antibondina *2p orbital and the lowest

resonance of CO is thus obtained by placing the extra electron in this orbital

This results in the 2T shape resonance of CO- which is analogous to the 2 reson-g
ance of N . The electron affinity of atomic oxygen is larger than the affinity of

atomic carbon [7.28] and therefore the lowest resonance of CO-, namely 2_, disso-

ciates into C( 3P) +O- (2 P). It might also be instructive to compare the resonant

states of CO with another isoelectronic system, the heteronuclear diatomic mole-

cule NO [7.67]. The X2. ground state of NO has the same configuration as the

lowest , resonance of CO" mentioned above. The lowest excited 2. state of NO, the

B state at 5.7 eV, is bound in the Franck-Condon region. This state of NO has the
3 2*2 2-dominant configuration ... (T2p) (-2 p) (,*2p) . The analogous excited 2+ resonance

of CO is also expected to be attractive in the Franc -Condon recion and is propc.sed

[7.78] to be responsible for the vertical onset of the 0 -production curve at the

threshold.
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The resonance most probably responsible for C(4 S) 0( 3P) production is the2 Feshbach resonance with the dominant configuration

(ols) 2(o,*s) 2 (O2s)2 (o*2s)2 (r2p)4(a2p)(c3s)2 2 +

This resonance was first observed [7.79] at 10.02 eV during investigations of the

energy dependence of the differential cross sections for scattering of low-energy

electrons (9.5-11.5 eV) by CO. The width of this resonance is expected to be small,

due to its closed-channel nature. In fact, ab initio calculations [7.80] give a

width of 71 meV compared with the experimental value [7.79] of 45 meV. An analogous

Feshbach 2 resonance of N , with a similar configuration, is observed [7.81] at

11.48 eV.

b,) Vibrationa' ExcZ'ation

Experimental observations [7.47] of the energy dependence of low-energy cross sec-

tions for the vibrational excitation of CO reveal characteristics which are very

similar to those shown by the cross sections for N2. The vibrational-excitation

cross sections show peaks which shift toward higher energies with increasing final

vibrational quantum number. These characteristics are once again understood in

terms of the boomerang limit of the lowest resonance of CC, namely, the 2. shape

resonance. As shown in Fig.7.11, the semiempirical calculations [7.82.,31 usino

the local width resonance model are able to explain the experimental observations

[7.47] in a satisfactory manner. The average width of the 2.., resonance, as obtained

by this semiempirical fit, is indeed comparable to the vibrational period of the

resonant state as expected for the boomerang limit. Even the semiclassical calcu-

lations [7.84) of the vibrational excitation cross sections using semiempiricaily

derived resonance parameters are in fairly good agreement with the experimental

observations.

The energy position of the 2- resonance of CO, which is essentially responsible

for the oscillatory structure in the vibrational excitation cross sections at low

energies (-1-4 eV), is 1.8 eV [7.47,85]. Figure 7.11 shows that, for electron im-

pact energies either less than I eV or larger than 3.5 cV, the resonant contribu-

tion to the excitation is negligible and the excitation in these energy ranges is

completely via nonresonant processes. In fact, on comparing the cross section 701

for electron impact energies less than I eV for isoelectronic molecules CO and N2
(from Figs.7.11 and 9, respectively), it is observed that the nonresonant contri-

bution to the excitation persists below 1 eV for CO while for N2 there is almost

no background nonresonant contribution. This is understood [7.47] by the fact that,

unlike N2, carbon monoxide has a permanent dipole moment which is responsible for
a considerable nonresorant contribution.

The angular dependences of the excitation cross sections at low energies (,5 eV)

for isoelectronic molecules CO and N, are observed [7.47,86] to be different in
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O-. Fig.7.11. Energy dependence of the total cross
sections for the vibrational excitation of CO

0.2- from the lowest level v =0. ( ---- ): experiment
[7.47]; (- ): theoretical results [7.83]. From

o [7.83) with permission
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shape. At these low energies the excitation cross sections are dominated by shape

resonances for CO- and 2 g for N2. The temporarily bound electrons in these

resonances are trapped in the molecular orbitals p- for CO and g for N which.

in the united-atom limit, coalesce into p- and d-type atomic orbitals, respectively.
Thus the angular momentum quantum number of the autodetaching electron is ; =1 for

CO and 2 for N2, which, of course, influences the angular distribution.

Dissociative electron attachment to CO can lead to two possible stable negative ions

C and 0-. Due to the difference in the electron affinities of C and 0, the thres-

holds for production of the two ions are different. For example, the process

e + CO - C + 0

is possible only for electron impact energies >9.63 eV, while the process

e + CO - C + 0
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.Fig.7.12. A global view of
2.00 production from CO by

electron impact. From
[7.51) with permission
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Electron impact energy 1eV]

has a higher threshold of 9.82 eV. Moreover, the cross section for the formation

of C via dissociative attachment is smaller than the cross section for 0 forma-

tion [7.87,88]. Figure 7.12 shows [7.51] the global behavior of 0 production from

CO. The threshold peak at 9.6 eV results from the lowest excited B 2_ shape reson-

ance of CO and gives a maximum cross section of 2 -0 
9cm2 . The vertical onset of

the attachment cross section indicates that this 2T resonance of CO- must be attrac-

tive in the Franck-Condon region. The structure on the high-energy side is related

to the formation of C*(ID) [7.78].

The sharp rise in 0" production from CO for electron impact energy larger than

20 eV arises from the process of polar dissociation [7.511. The threshold 'or this

process

e + CO -C+ + 0 + e

is 20.89 eV. The threshold for polar dissociation leading to C, namely.

e + CO -C- + 0+ + e

is 23.44 eV. Note that even though the peak cross section for 0 formation by polar

dissociation is comparable to that by dissociative electron attachment, the rela-

tively high threshold of polar dissociation makes that process a less efficient

source of negative ions.

The cross section for C formation by attachment to CO, at its peal,. is approxi-

mately a factor of 3000 smaller than the cross section for 0- formation 17.8&1. An

almost vertical onset at 10.26 eV gives a peak cross section of only 7 ,102 3 cm2 .

The difference between the observed onset and the expected threshold is interpre-

ted [7.34] as due to the predissociation of the 2,+ resonant state of CO- by

another resonant state leading to the C( 4S) +0( 3P) dissociation limit. This inter-

pretation is further reinforced by the observation [7.34] of peaks in the variation
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of C ion current with the incident electron impact energy. The first two peaks at

10.27 eV and 10.50 eV are clearly related in their energy position to the vibra-

tional levels v =1 and 2 of the 2Z+ resonant state of CO- at 10.04 eV.

7.2.4 Hydrogen Chloride

a) Reso~nances

The structure of the resonances of HC is of special interest because of the highly

polar nature of this molecule. The permanent dipole moment of HCl (1.11 D) is slight-

ly smaller than the critical value (1.625 D) needed to bind an electron to a polar

molecule (7.891. The role played by the quasi-bound virtual state of the projectile

electron in the dipolar field of the molecule in explaining the observations of

the vibrational excitation still remains a matter of discussion [7.901. The fact

that both the constituent fragments of hydrogen chloride nave positive electron af-
finities implies that, asymptotically, the potential curves of the resonant states

of HCl- are bound relative to the ground X I + state of HC. In the united-atom limit
the configuration of the ground state of HCl is

(Iso)
2 (2so)

2 (2pc)
2 (2p7)

4 (3sc)
2 (3pc)

2 (3p-R)
4 X iZ+

The lowest resonant state is obtained by placing the extra electron in the 4sc

molecular orbital. Also, noting that the electron affinity of the Cl atom (3.615 eV)

is larger than the electron affinity of the H atom (0.754 eV) and that both H- and

Cl have no known excited states [7.281, the lowest resonant state asymptotically

correlates with the limit H +CI. In fact, using the Wigner-Witmer correlation

rules [7.91], it is easy to infer that the only resonant state of HCl dissociat-

ing into H( 2S) +Cl-(IS) has symmetry 2 +. The other resonant states, dissociatino

into H-( S) +Cl( 2P), have possible symmetries of 2 + and 2;.

It has been pointed out [7.92] that because of the highly polar nature of the

molecule HCI, "electron trapping states" can also arise due to the dipolar field
of the molecule. As the internuclear separation increases, the dipolar field tends

to zero and these quasi-bound states merge into continuum states. Indeed, ab initic

calculations [7.92-95] of the potential curves of HCl show several states of

symmetry which exist only in the region of equilibrium internuclear separation

(1.27 A) and cannot be followed at larger values of R. The second-lowest state of

HCl with symmetry exhibits an attractive potential curve that runs parallel

to the X T curve of HCl for internuclear separations less than -2 A and merges
into a continuum state for larger separations. The mechanism responsible for the

trapping of the incoming electron cannot be the centrifugal barrier since the domi-

nant component of angular momentum is an s wave. The dipolar field of the molecule

HCl is on the verge of binding an s electron; small displacements of the nuclei

can cause an s wave bound state to appear or disappear. Such states are referred to
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as the virtual states of the system [7.96]. The virtual states merging into con-

tinuum states, in the case of HCl, would not be dissociating into atomic anions

but rather into H +Cl +e. Whether these quasi-bound states in the dipolar field

can be construed as bona fide resonances remains a topic of current discussion

[7.95].

The lowest state of HCI- with 2T+ symmetry does indeed correlate, at infinite a

separations, with H +ClI. The potential curve for this resonant state is calculated

to be an attractive one; however, the location of the potential minimum is not

well established. The two ab initio calculations for the resonant states of HCl

dissociating into H +CI provide conflicting results. For example, one calculation

[7.93] gives a purely repulsive potential curve for the 2 state of HCIl, while the

other 17.94] shows a weakly attractive curve for the same state. An experimentally

derived potential curve for tne 2 state is repulsive at least in the Franck-Condon

region [7.97].

b) raoa Ecato

Experimental observations [7.98,99] of the total cross sections for the excitation

of the low-lying vibrational levels of HCI reveal some interesting features. First,

the cross sections show a pronounced peak, about 0.2 eV wide, at the threshold, for

excitation to each final vibrational level vf =1,2,..... A small cusp is observed

in the cross section r01 at an impact energy which corresponds to the opening of

the second vibrational level. Second, all the excitation cross sections show a

broad peak at electron impact energy of -2.5 eV. Third, the absolute magnitudes of

the total excitation cross sections are about one or two orders of magnitude larger

than expected from the Born approximation calculations 17.100]. The polarization

effects are estimated to be small so that inclusion of the polarization interaction

would not be sufficient to resolve this discrepancy. It is thus inferred that the

excitation to vf =1 and vf =2 levels of HCl is not a direct (or potential) excita-

tion. An isotropic distribution of the scattered electrons further supports this

conclusion.

hfese ex1.cr-mentcl OL vlio le inspired a number of Lalculations and inter-

pretations of the vibrational excitation cross sections [7.90,92.101-10&4. Stabiliz-

ation calculations of the 21+ states of HCI-, for fixed nuclei, indicate a state

whose potential curve, running parallel to the potential curve of the ground elec-

tronic state of HCI, can be followed only for small values of P. (in the stabiliz-

ation procedure, roots of the Hamiltonian matrix that remain stable on increasing

the size of the basis set are interpreted to mimic the true energy eigenvalues of

the Hamiltonian [7.105]. This procedure, however, does not provide information, for

positive roots, as to whether the stable root is a resonance or a virtual state.)

The curve of this second-lowest 2+ state of HCI- is displaced by at most 0.32 eV
1+ 2+

from the X Z state of HCl. This I state has been proposed [7.92] to be respon-
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Fig.7.13. Total cross sections for
vibrational excitation of HC1 by elec-

18.0 - tron impact. (- ): theoretical re-
16.0 - r(V=0-) sults [7.101); ( .... ): experiment

[7.99). From 17.101] with permission
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sible for the strong threshold peak in the vibrational excitation cross sections

of HCI. The facts that the peak in the cross sections occurs about 0.32 eV above

the threshold end that the angular distribution of the scattered electron is iso-

tropic are consistent with the energy position as well as the 2,+ symmetry of this

state of HCl. Subsequently, it has been shown [7.1063 that the two lowest 2

states of HCI exhibit characteristics which are expected of virtual states. It

is further shown that on taking nuclear motion into account, a virtual state in

the fixed nuclei approximation leads to a separate virtual state associated with

each vibrational excitation threshold. That would account for the sharp peak ob-

served at the threshold for excitation to each final vibrotional level vf =1,2,...

The results of a model calculation [7.101], for the vibrational excitation cross

sections employing two adjustable parameters, are shown in Fig.7.13. These calcu-

lations invoke the idea of a virtual state to account for the enhancement of the de-

parting electron's wave function near the molecule. The main threshxld features of

the observations for both 01 and o02 are satisfactorily explained by these calcu-

lations.

The s wave virtual state model is not the only one that explains the threshold

structure in vibrational excitation functions of HCI. For example, the threshold

peaks can also be qualitatively explained [7.102] by assuming a discrete electronic
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state of HCl coupled to a continuum distorted by a long-range strong dipole poten-

tial. It is, however, to be noted that a permanent dipole moment of the molecule is

not essential for the occurrence of threshold peaks since a number of nonpolar mole-

cules, for example CO2 and SF6, also exhibit [7.107] threshold peaks. Recent ab

initio calculations, using static, exchange, and parameter-free correlation-polariz-

ation interactions, provided vibrational excitation cross sections which were about

a factor of ten smaller in magnitude but had the semblance of a threshold peak

[7.100). Thus it is rather difficult to decide unambiguously about the merits of

various calculations of the vibrational excitation cross sections of HCl.

Dissociative electron attachment to HCl can result in the formation of either Cl

or H. Due to the larger electron affinity of the Cl atom, the threshold for pro-

duction of Cl- is lower than that for H-. Furthermore, the peak attachment cross

section leading to Cl production is about an order of maonitude larger than that

for H production [7.35,108]. Experimental observations of cross sections for elec-

tron attachment to HC are summarized in Fig.7.14. Detailed observations reveal

the following features: (a) The cross section for Cl- production has an almost ver-

tical onset at an electron impact energy of 0.82 eV. Regularly spaced decreasing

step structures, with an energy spacing of 0.3 eV, are observed on the higher-energy

side of the peak [7.109,110]. (b) The cross section for H_ production, as a function

of the incident electron energy, shows two peaks [7.111]. The first peak has a

steep but nonvertical onset at 7.1 eV while the second peak gradually rises to a

HC1
C1_-

I -I.-

E ev
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maximum at 9.3 eV. (c) Internal heating of the HCI molecule in the form of rovi-

brational excitation enhances the attachment cross section, analogously to H2, by

several orders of magnitude [7.112].

A number of calculations as well as further experiments have been carried out

to understand these features. The step structure on the higher-energy side of the

C1 peak is seen to occur at energies coincident with the vibrational thresholds of

HCI. At the threshold for Cl" formation, the energy of the incident electron is

comparable to the vibrational spacing of HCl and thus the use of nonlocal formalism

[see (7.1.12) and recall that the summation contains all cpvr channels only] is es-

sential for the computation of attachment cross sections. Now as the incident elec-

tron energy is increased, every time a new vibrational level is reached a new exit

channel for the electron detachment opens up, which results in a reduction in the

electron attachment cross section. This explains [7.113] the step structure ob-

served on the higher-energy side of the Cl" formation cross section.

Angular distributions of H ions produced by electron attachment to HC1 provide

clues about the nature of the peaks in the H production cross sections at 7.1 eV

and at 9.3 eV [7.97]. For example, at an incident electron energy of 7.1 eV, the

angular distribution of H ions shows a maximum at 90: and a minimum at 55 which

is characteristic of a dc wave. Similarly, at an incident electron energy of 9.3 eV,

the angular distribution of H shows a behavior that is characteristic of a d- wave.

These observations clearly indicate that the peaks at 7.1 eV and 9.3 eV are associ-

ated with the production of H ions via intermediate HCl states of symmetries 2L+

and 2r, respectively. Observations also reveal [7.97] fine structures superimposed

on the higher-energy side of the broad 9.3 eV peak. These structures are believed

to occur due to the interaction of the 2- repulsive state of HCl- with the X ., state

of HC)+ as the grandparent.
Finally, observations of the temperature dependence of the attachment cross sec-

tions reveal [7.112] a dramatic dependence of the cross sections on the initial

rovibrational energy of the molecule. For example, the threshold cross sectior is

enhanced by factors of 38 and 880 for HCI and by factors of 32 and 580 for DCl when

the attaching molecule is excited to v =1 and v =2 levels, respectively. Applications

of a nonlocal resonant scattering model to electron attachment to HCl and DCi have

met with only partial success [7.114]. These semiempirical calculations show only

qualitative agreement with the experimental observations; further imr-c.'emerts in

the calculations are necessary for any quantitative predictions [7.115].

7.3 Applications of the Attachment Process Under Nonequilibrium
Conditions

The process of dissociative electron attachment has beer, important in manv practi-

cal applications. In particular, the process plays a key role in the production of

high-energy beams for neutral injection in fusior. p lasmas, the kinetics of Plasma
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switches, the analysis of attachment-induced instabilities in laser plasmas, the

selection and application of gaseous dielectrics, etc. The rovibrational excitation

of the attaching molecule enhances the rate of electron attachment. The degree of

enhancement differs from one species to another and, depending upon the nature and

the internal energy of the attaching molecule, can be as much as several orders of

magnitude compared to the unexcited gas.

7.3.1 Neutral Beam Injection in Fusion Plasma

For future production of high-energy beams of neutral atomic hydrogen and deuterium,

the fusion community has become aware of the possibility of using the negative ion

beams as intermediaries [7.116]. In the past, production of high-energy neutral

beams has been achieved by neutralizing the accelerated positive ion beams. How-

ever, due to their low efficiency of neutralization, the positive ion beams tech-

nology is quite difficult. The negative ion beams can be very efficiently produced

by dissociative electron attachment to H2 or D2. The rovibrational excitation of
the neutral molecule aids the production of the negative ion beams. After acceler-

ation, the negative ion beam can be neutralized, with high efficiency, using photo-

detachment techniques. The high-energy neutral beam can be used to heat the fusion

plasma as well as to provide the fuel. Presently both H- and D- are being considered

for neutral beam injection in different experimental reactor designs [7.117].

7.3.2 Electron-Beam Switches

The feasibility of using a discharge ionized by an electron beam, for use as an on-

off plasma switch is presently under consideration [7.118). It has been demonstrated

that electron beams of current densities as low as 10 mA/cm2 are capable of producing

discharge (or switched) currents as high as 1-10 A/cm . Thus, it seems possible to

have current gains, that is, the ratio of discharge-switched current to the elec-

tron-beam current, as high as 1000 or so. For high repetition switching rates it

is desirable to have as small a decay (or switch-off) time as possible. This can be

most effectively achieved by introducing an electron attaching gas into the dis-

charge plasma [7.119]. The rate of dissociative e&ectron attachment to this gas then

controls the decay time of the switch. The rovibrational excitation of the attachinc
molecule helps in two ways: first, it enhances the attachment rate and thus lowers

the decay time. Second, thc rovibrational excitation lowers the threshold of elec-

tron energy for dissociative electron attachment to occur. It is important, however,

that the attachment should not introduce too high a loss in the on condition. Several

polyatomic attaching gases are successfully used in plasma switches. Amrong diatomic

molecules, HCl seems to be a prime candidate.
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7.3.3 Laser Plasma Instabilities

Plasma instabilities in the form of striations (or ionization waves) often have

been observed in self-sustained discharges used for CO2 lasers [7.120]. In general,

these instabilities arise due to the presence of a gas that is capable of producing

negative ions via dissociative electron attachment and are referred to as the at-

tachment instabilities of the laser plasma. The conditions necessary for the occur-

rence of instability are (i) that the rate of dissociative electron attachment in-

creases with electron temperature and (ii) that the attachment and ionization rates

are comparable in magnitude. If the effects of other processes governing the gain or

loss of electrons, for example electron detachment and electron recombination, are

negligible, then during any positive fluctuation of the electron temperature, more

electrons are lost by dissociative attachment than are gained by ionization. The

net loss of low-energy electrons thus leads to a still higher electron temperature

and a smaller electron density. The fluctuation in electron temperature thus grows

and leads to attachment instability. In CO2 and CO laser discharges, the dissocia-

tive electron attachment rates are strongly increasing functions of the electron

temperature and the ionization and the attachment rates are comparable so that the

conditions for the attachment-induced instability are easily met.

7.3.4 Gaseous Dielectrics

For a gas to act as an efficient dielectric, it should be able to sustain large

applied electric fields without causing gaseous breakdown. As the applied electric

field is increased, a large fraction of the free electrons in the gas attain suf-

ficient energy to cause ionization which eventually leads to the breakdown of the

gas. The optimum dielectric efficiency of the gas is thus achieved by lowering both

the energy and the number density of free electrons in the gas. Both of these Para-

meters are controlled by introducing, in the dielectric medium, a gas with large

cross sections for dissociative attachment and vibraticnal excitation by electron

impact. The vibrational excitation reduces the average energy of the free electrons

while dissociative attachment reduces their number density. Basic information abo)ut

dissociative electron attachment and vibrational e>citation is thus important for

the development of gaseous dielectrics [7.121].

7.A Appendix: Normalization of Continuum Functions

The expressions for cross sections for DA and VE, as given by various authors, ap-

pear to differ depending upon the normalization of the continuum functions used.

In this appendix we summarize the properties of momentum-normalized and energy-

normalized continuum functions.
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Consider the functions
I' ] ik-r

4(k ,r ) e \ 8- i)

with

E KkE 6 ,- --)k

Then the orthonornality relations among these functions are

f i*(k,r)(k',r)dr = (k - k') k , - k')

f *(k,r)i(k,r')dk = "(r - r',)

f 4*(E,r),(E',r)dr = ;(E ) (E - E') ,k - r )

.f "*(Er),(E,r')dE (r - r')

The probability flux densities associated with .(k,r) and tE,r) are (hk,'S 3m) k

and (k2/87-3hl) k, respectively. The asymptotic forms of the momentum- and ene-gy-

normalized functions are obtained by using plane wave expansions. These are

S.k,r) Z i k,r)Y
* 
(kY r)and

~m m
(E,r) = i ,(E, r)Y.* ( )Y { (r ) ,

where, for r

(,r) 
2  

sin(kr 7r :/2) and

¢;(~r) (T2T2m 'sin(kr -" cl/2)

'7 kr
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Cross sections for vibrational excitation (Vii, of the X -stac of L 2 %ia formation of ihuc cied A . B 11l
electronic states are reported. f or W through the A state, the cross sections are nearl. connT1 lor formng X 1niX
(3 < " < 9) via electron collisional excitation. For photon pumping (66(0 < X ! 700 nm) of the A I _ u stat.e .,C-
9 are predorninantl\ formed. VE via the B 111, state has a lower probabdit .

I. Introduction e + Li,(X 1 )-Li(A 1 -- B1lll)1 )e . 1

The negative ions of light atoms are currently be- of

ing studied for their possible applications in gaseous Li-,(X + hv - Li*(A 1 1* B ] n,)
discharges. fusion plasmas and gas lasers II]. A possi- -li - u' B (
ble source for the volume production of atomic anions The excited molecule undergoes rapid radiative deca.
is the process of dissociative electron attachment to which returns the molecule to an excited vibrational
molecules 121. The rate of negative ion production by level of the ground electronic state:
this process is enhanced, sometimes by orders of mag- L.i*( I ". B I l u ) -Li(X ,+ 111. (3)
nitude, if the molecule is initially rovibrationally ex- 2 u-2

cited 13-51. Vibrational excitation of the molecule In order to obtain the cross sect ions for %ibrational
can be achieved either via a resonance (molecular excitation by these processes, one t ecd the prot'ltial
anion) formation or via excitation of the higher elec- energ curves and the vibrational manifold of the
tronic states of th- neutral molecule. In this paper. X l v  A I Xand B I ll,, states of LiU,. FoTtunatel\
we present cross sections for excitation of vibrational these states have been extensivel\ studied and a,-curate

levels of the ground X electronic state of Li-1 via potential curves are available 16-81. Using these data.
electronic excitation to the A I and the B Il u  the band strength: (or transition mvioments). Franck -

states of Lii. Condon factors and transition probabilities (or
In the processes under consideration, the elec- Einstein .4 coefficients) have been calculated for both

tronic excitation of Li, to higher singlet states oc- the X -- A and X - B transitions. Fro-n t his itforma-
curs either by electron impact or by photon pumping. lion. the fraction of electronically excited molecules
Sclciliatically. deca\ ing into a particular vibrational level u of the

ground electronic state can be calculated. The absw-

Supported in part b\ Ai OSR undcr (ontraot I 4962i-83- lute crlss sections for lbratimal excitation ate ihen
0094 and (rant Al OSR-84-0143. obtained b ttultipl, tg this flactinlt h I Iotal

390 0 00lh)O',]4,'sS'Sn; s3ts Eleit nce PUsl I)l1C BA'
(Norh-Illlai P~ vic INhi hing11 DI\ islo I
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cross section for electronic excitation. We are able to
obtain only the relative cross sections for vibrational QA(B)(v') F qA(B. v'  (6)

excitation via electron collisions since information is U

not presently available on the electronic excitation We shall see that this fraction is nearly unity for the

cross sections of Li2 . states considered here. Any deviation from unity arises
from the possibility of radiative decay to the contin-
uum of X 11.. The probability for a transition from

2. Theoretical considerations the excited electronic state back to the ground state
is given by the Einstein A coefficient. The fraction of

We consider here the vibrational excitation of the transitions from level v of A(B) back to level v" of X

ground X 1 I state of the Li 2 molecule by radiative can be written as:
decay from either the A 12;1 or B I excited states.
Population of these excited states can be achieved by )A(Bv' = A A(B) ,v ' / E A A B), (7)
either electron collisions with ground-state molecules

or by photon pumping. via lasers as an example. The The total cross section for populating a particular vi-

resultant vibra, ional distribution, in either case, is brational level v" of the ground X 12:' state via elec-

governed primarily by the product of the probability tron excitation of A t v+ and B 11u can then be written
for electronic excitation and the transition probabil- as
ity for radiative decay back to the ground state of Li 2 .

For either mechanism, we take the probability for °T(Vi' = O, Vf. E) = OA(Vi = 0, Vfe) + OB( V =0, 0 , C)A (t,, = ,' ";, + ,BB ,. 8

electronic excitation to be proportional to the band o(e)) FA(U =0o)+oBe)FB(v = O.) (8)
strength for optical absorption. This is accurate for

photon excitation and has been shown by Rudge [9] where

and Hiskes [10] to be a reasonable approximation for
electron excitation, provided the vibrational depend- F ,iV =0. V'') = j ,)?,L= )QA A3(' ( 9)

ence of the excitation cross section can be factored V

using the Franck-Condon approximation. and oA(B)(C) is the total cross section for electronic

excitation from X 1* to the A(B) state of Li, Since

2.1. Electron excitation we are interested only in reiative cross sections, we
have for electron excitation via either A I '+ or B 1 ll

The probability for electron excitation from the R A(B)(V" 0, U;)
ground vibrational level of Li 2(X 12:') to the v' level X , U)

of either the A I Zu or B I flu excited state can be = oaIt)(V;=Of. E)!OA(B)(U 1  0, v1 0. E)

taken as
A= F (V'= 0.V),/F BI' 0,v-; 0). (10)?A(B),v' -p /A(B).v' p pA(B),v' (4 1

- X,0 / ,0 ,) 2.2. Photon excitation

where the band strength, pA(B).,; is defined as the
X.Vf

matrix element of the electronic dipole moment The cross section for photon excitation of the
D(R): A I,.Z+ or B lu states from the ground vibrational

PA(B)v' = v)2 (5) state of Li2(X 1 _ ) can be written as
= l(4i(X," )0D(R) l((A(B), L'(X 5

and an average over rotational motion is assumed. o '(, = 0. t') (4i/r)Pxi . (11)

The fraction decaying back to any discrete vibrational The iota] cross section for populating a particular
le el v" of the ground X 1 state, from a particular vibrational level v' of the ground I state via photon
vibrational level v' of the excited state, can be obtain- excitation of either A I "' or B II is

ed by summing the appropriate Franck-Condon fac- 0 AB 11.. Ov U")=o A Btt0 = 0,' )Q.t A(, -)

tors. X I X V
(121
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Eq. (12) exhibits an implicit photon energy depen- Laser wavelength, , (nm)
dence through the X(v") - A(v') or B(v') transition 713 689 666 646 627
wavelength. 100 1 1 1"

5 -7r .' '_" -
'r 4/iV 6

3. Results and discussion 2 - -1 8

I

The ratio of cross sections, defined by eq. (10), for 10-1 '

vibrational excitation of Li2(X I1I) by electron im 5
pact excitation of the A1 X and B flu states is shown . I i

in fig. I as a function of the internal vibrational energy 2 -V
of Li2 . Excitation via the A 12;+ state yields a rela-

tively flat final vibrational level distribution in the 10-2 / I

range 3 <! v" _ 9. Excitation via the B nflu state leads U / i -i
to a vibrational level distribution that falls off rapidly i I
for increasing vibrational energy in the product Li2 . " 2
Fig. I suggests that excitation of A I Z' by electron '" I i I
impact energies 1.80 e -! 2.5 eV should produce a 10-3 I
ground-stare vibrational distribution well suited for . it

efficient dissociative attachment of low-energy elec- I
trons:

e+ Lil - Li + Li-. (13) 10 I
2 10-48 11

In contrast, the B nlu state of Li2 appears to be less 0 2 4 6 8 10
efficient for populating the vibrational levels of

Li 2(X 11,) with v" >t 4. 1ig. 2.Cross section for the excitation of the vibrational lesels
The cross sections for vibrational excitation of of Li 2 fX 11) by photon excitation of the A 3 state

Li2 (X 11') via photon pumping of A I V and B Il
are shown in figs. 2 and 3, respectively. The largest
cross sections are found to occur for excitation of v' resultant vibrational distribution of XI is rather

1-4 of either the A 12; state or B [lu state. The flat for excitation via the A 1 -+ state but exhibits a
rapid fall-off for B Iflu excitation.

1.0 -= 0 4. Conclusions

0.8
Analysis of the band strengths for excitation of

o0. the A I Xu and B IlHu states and their subsequent ra-

. v 7 diative decay indicates that nearlv 100'( of the orig.

a 0.4 • inal excitations through either the A or B state re-

;.2 turn to the discrete vibrational levels of the ground
0.2 1 V state. By summing eq. (9) over all final states,

0 u11. we find the decay to the continuum to be less
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 than O.1 .This result for Li, is thus significantly

Internal energy. Ewvj') different from that reported by Hiskes [101 in a sim-

i ig. 1. Relative cross section for the excitation of the vibra- ilar study of e + H, collisional excitation, where
tional levels of Lt2(X +) by electron collisional excitatlons there is nearly a 40'; loss to the continuum upon ra-
through the A and B states. diative deexcitation.
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Laser wavelength, X (nm) sections and dissociative electron attachment rates for

490 484 467 457 448 this system are in progress.
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LETTER TO THE EDITOR

The second Born contribution of long-range forces to higher
partial-wave phaseshifts

J M Wadehra
Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48202,
USA

Received 1 August 1986

Abstract. An exact analytic evaluation of the second Born contribution of the long-range
potentials, which fall off as r-" as r-.oo, to the phaseshifts of higher partial waves
(21> 2n -5) is presented. This expression agrees, for n = 4, with the second term in the
energy expansion of the phaseshifts obtained previously by Ali and Fraser. The expression
can be used for predicting higher partial-wave phaseshifts as well as for determining the
phaseshifts from experimental scattering data.

The scattering of a particle of energy E = h2k 2/2g by a spherically symmetric potential
can be best described in terms of phaseshifts, of various partial waves, which are
functions of the wavenumber k For long-range potentials which fall off as r-" when
r - oc, the computation of the phaseshifts for any angular momentum I requires special
consideration. For example, in the scattering of a charged projectile by a neutral
polarisable system, where the dominant long-range effect is the 1/r4 interaction arising
from the adiabatic dipole polarisability of the target, it is known that the leading term
in the energy expansion of the higher phaseshifts is proportional to k2 independent
of I (O'Malley et al 1961). The i-dependent coefficient of this leading term was obtained
analytically by O'Malley et al. The next term, proportional to k4, in the energy
expansion of the higher phaseshifts (1_>2) for the 1/r4 interaction was obtained
analytically by Ali and Fraser (1977). Using mathematical arguments it has been shown
(Levy and Keller 1963) that the leading term of O'Malley et al is identical to the first
Born contribution of the long range l/r4 potential to the higher phaseshifts. In this
paper we show explicitly that the next term obtained by Ali and Fraser is essentially
the second Born contribution of the l/r 4 potential to the higher phaseshifts. Thus,
our analysis will provide an alternative derivation of the second term in the low-energy
expansion of the higher phaseshifts. In fact, the procedure given below can easily be
extended to obtain explicitly higher Born contributions to the phaseshifts for any
long-range interaction.

Since long-range potentials of various inverse powers of r appear in several
applications in atomic and molecular physics, we con-ider a general long-range spheri-
cally symmetric potential of the form

V(r) = Ca,,-' e2/r" (1)

where the constants in the coefficient (e is the electronic charge, a,,= 2/mc' is the

0022-3700/86/210761 + 04502.50 © 1986 The Institute of Physics L761
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L762 Letter to the Editor

Bohr radius and m is the mass of the electron) have been chosen so that the C. are
dimensionless. The final result will be simplified only for n = 4. The second Born
contribution to the phaseshift of the Ith partial wave for a spherically symmetric
potential V(r) is (Joachain 1975)

(tan 61 = -k 2  dr r2j(kr)(21AV(r)/ h2)

x J dr' r'2j(kr')(2MV(r')/ h 2 )j(kr,)nI(kr>). (2)

Substituting for V(r) from (1) into (2), one gets

(tan 81)1 = -8[C.(M/m)(kao)"- 2 ]V (3a)

where

I = dyy'- 2 "j,(y)n,(y) dxx 2 -f(xy). (3b)

Note that, for given n, the k dependence of the phaseshift can be determined trivially
since I is independent of k. For the evaluation of I, it is most convenient to work in
terms of Meijer's G function (Luke 1975). Using

-x- = - X 21 L;01' -L (4a)

. 1T1 2 ; (4b)
J,(x)n?(x) = (-])I+' 2x (x2 '10; L-L)

and equation (22) on p 190, equation (4) on p 176 and equation (5) on p 187 of Luke
(1975), the integral I can be written in the following closed form:

I = G 2533 ( I + n, -n , n ; - L - + n, L - I+ n (5 )
16 - + n, L; 0,-L,in- I

with L = 1+-2. The conditions of validity of this expression are

n>l and 21+5>2n. (6)

For a given n, the G function appearing in equation (5) can be evaluated usng standard
reduction techniques for these functions (Luke 1975). The fact that the above G
function has unit argument further assists in the simplification. We illustrate this
reduction technique for the case of n = 4 which corresponds to the adiabatic dipole
polarisation potential. The relevant G function is

i2( 3,2, ; -L +3, L + 37
GG ,LO-L,; I I

where, as before, L = I + 2. Using the recursion relations and some elementary properties
of G functions (equations (1) and (2) on p 176 and equation (9) on p 177 of Luke
1975), one can reduce G4 of equation (7) above to a combination of G functions of

. ~. -



Letter to the Editor L763

lower indices:

G4I G1, (I .- L+3,L+3)
L(L+I)(L +2) \

2(2L+ 1) G2(1 2 ;-L+ 3, L+ 2\
(L+2)(L+ I)2L2(L- i) , L; -L

+ 2(5L2 -2) G23 ; - L+l)
(L+2)(L+1)2L(L-)2(L_2)G3(1 ; ,L; -L

+(L+2)(L+i_)_.)(LNL2)Go33(I 1,,-+3

2(3L- L-) G( ( 12(; -L+3)

(L+1)L(L-1)(L-2)'( - j; 0, -L
1GI1 13, -L+3)

+ (L+l)L(L- 1) G2( 70, -L )} (8)

At any stage, the G functions can be written in terms of the generalised hypergeometric
functions Fq. However, if the last four terms in equation (8) are reduced further, by
using recursion relations, to G functions of still lower indices and then these functions
are expressed in terms of Gaussian hypergeometric functions 2F, of unit argument, it
can be easily seen that the contribution of the last four ternis in equation (8) is zero.
The first three terms in equation (8) can be expressed in terms of hypergeometric
functions 3F,- of unit argument which can be evaluated by using Dixon's and Saal-
schiitz's formulae (pp 163-4 of Luke 1975). The final result is

G4=[(-I)'/16(L+2)(L+ 1)L(L- 1)'(L-2)](15L 4 -35L 2 +8). (9)

Thus the second Born contribution of the I/ r" interaction to the phaseshifts of higher
partial waves (I --2) is

(tan51)1I= C (kao) 2 15L 4 -35L-+8 (0
(a m (L + 2)(L + 1)'L(L - )'L-2) (10)

with L = l+2. This agrees with the expression given by Ali and Fraser (1977).
For large separations between a charged projectile (of mass /L) and a neutral atomic

or molecular target, the first two terms of the interaction energy, in the adiabatic
approximation, are

V(r)= 4_ra1a- a / (1,r
-ad 0oe2/r - caoe /(

where ad and aq are the static dipole and the quadrupole polarisabilit), in atomic
units, of the target, respectively. The first Born contribution of the r4 and r-" terms
of equation (11) to the phaseshift of the Ith partial wave (I - 2) is (Levy and Keller 1963)

(tan 8,) 1 + 3)(2 1 1)
2  -1) (d+ 3ag(ka)2  (12)

m (21+3)(21+1)(21-1)\d (21+ 5)(21- 3))12
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The first term is, of course, the one also given by O'Malley et al (1961). In many
previous investigations, equation (12) has been used for obtaining phaseshifts of higher
partial waves from known values of ad and a, or for experimental determinations of
the phaseshifts by fitting the experimental scattering data. However, the second Born
term of equation (10) siould also have been included in such analyses since it has the
same k dependence as the quadrupole term in (12). Numerical applications of (10),
clearly showing the importance of this term, have been provided by Ali and Fraser
(1977).

This research is supported, in part, by the Air Force Office of Scientific Research under
Grant Number AFOSR-84-0143.
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Exact evaluation and recursion relations of two-center harmonic oscillator
matrix elements

P. J. Drallos and J. M. Wadehra
Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48202

(Received 16 July 1986; accepted 21 August 1986)

Using vibrational wave functions of two relatively displaced harmonic oscillators of arbitrary
frequencies, Franck-Condon overlap integrals and matrix elements of x, exp ( - 2cx), and
exp( - cx2 ) (x is the internuclear separation) are obtained. Useful three-term, four-term, and
five-term recursion relations among these matrix elements are derived. It is shown that all of
the relevant matrix elements can be obtained from a mere knowledge of the lowest two
Franck-Condon overlap integrals. Results are illustrated by computation of Franck-Condon
factors for the A 'Y.-'-X'II and theB 'H,-X 'Y systems of 7Li.

I. INTRODUCTION II. THE FRANCK-CONDON OVERLAP INTEGRAL

A quantitative description of transition probabilities for The relevant potential energy curves are replaced by
various vibrational levels (that is, vibrational excitation) as those of one-dimensional harmonic oscillators of frequency
well as of intensities of various lines in the spectra of diatom- o, and o, with a relative separation of r. For convenience,
ic and polyatomic molecules requires matrix elements of var- define w, = h (,ur'), where u is the reduced mass of the
ious powers of the internuclear separation x between vibra- nuclei. The two-center Franck-Condon overlap integral is
tional levels belonging to two different electronic states of then defined as (mIn)), where
the molecule." A Franck-Condon overlap integral is a spe- (xlm) = (2"m!) - I/2[(o,/(Aoor

2
) ] 1/4

cial example of such a matrix element. For low-lying vibra-
tional levels, the potential curves of the molecular electronic X exp [ - ox 2/ ( 2) r 2) I H, [ (w /oo) /"x/r ] ( )

states can be represented with reasonable accuracy by those is the wave function of the mth level of the harmonic oscilla-
of linear harmonic oscillators. For higher vibrational levels, tor associated with the potential V, = 2 js)x-, and
where anharmonicity becomes important, the potential of a [) 114 1

Morse oscillator is a better representation of the true poten- ((xln)) = (2nn!) -"2[2/'7r)]/

tial curve. Even in such a case as the Morse oscillator, if one X exp[ - 2(x r)2/(2 0or) I
were to use first-order perturbation theory with the linear
harmonic oscillator as the zero-order approximation, the X1- [H(.2 / 0)o

1 2(x - r)/r] (2)

matrix elements of powers of x would appear in the correc- is the wave function of the nth level of the harmonic oscilla-
tion factors. With this spirit in mind, an attempt is made in tor associated with the potential V, = po (x - r) 2 Thus,

this paper to obtain general analytic expressions and simple (00)2) 1/4 ^xp[ -

recursion relations for two-center harmonic oscillator ma- (min)) ...w.r(2' ' "m!n!) 11/2 e 2p 2co, +t,)
trix elements of various functions (powers, exponential, and
Gaussian) ofx. In fact, a general five-term recursion relation X_ exp 0l + 

0 ) 2

to be derived below [Eq. (32) ], is valid for any analytical I [ ( 20)or)

function of x that could be expanded as a power series in x. 0 121 /2

The evaluation of Franck-Condon factors, which essen- - 2 ]/2 H, [(/(o) tl x/r]

tially involves an overlap integral between wave functions of
vibrational levels belonging to two different electronic states XH, [ (0),1Wo) 112 (x - r)/rjdx. (3)

of a molecule, using linear harmonic oscillator wave func- Now, on changing the integration variable from x to
tions has been carried out in a number of investigations, and t = x[ (01o + 02) /(20or 2) 11/2,

proper kudos have been distributed by Waldenstrfm and i/_
Razi Naqvi.' Various theoretical methods for obtaining the (mn)) N rT 1/21 exp[ - (t _y) 2 ]

Franck-Condon factors have been reviewed more recently 2(01 1/2 t

hy Kuz'menko et al.' Overlap matrix elements of various XH [ )

functions of x using, once again, vibrational wave functions I+

of two different harmonic oscillators, have been analytically 202 )I/ f1 \ /2

obtained in some recent papers.4' - In Sec. IV of the present L,(0, (00
paper we will obtain some general recursion relations among where
these matrix elements. A single and double ket notation (for N,_. (00 o,+)24 [(C11 +0)2"' irn!n!] , 2
example, Im) and In))) will be used to distinguish between
the vibrational eigenfunctions belonging to two different ×exp(-Y(oi/02)
electronic states. and

524 j. Chem. Phys. 85 (11), 1 December 1986 0021-9606/86/236524-06$02 10 1986 American Institute of Physics6524~~NC %hm.hs
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y =0)/[ 2 oo(to, +0)2)] /2. (5) which is derived in detail for the casef(t) = I in the Appen-

The integral in Eq. (4) is ofthe same form as the integral dix [see, for example, Eq. (A8)].

defined in the Appendix. A direct use of Eq. (A8) yields a Aor
closed-form expression for the Franck-Condon integral: A. Powers of the coordinate x

m02 - ,) / 2 The required matrix elements can be written as

k=o m =, + W2) (rnIx'In)) = - x --- 2 )/

-0 +[ W2)Wl j
2

, X J't exp (t y)2]

[jf j 2 1I/2]

XH _ \to( 2  2)) xH (at)H (bt - z)dt, (11)

2 1/2 where
XH n k 2. (6) a = [2o,/(&t, + o2) ]12, b = [2o,/(r,, + (o) ] -12,

This expression has been obtained, using various proce- and z = (w2/to) I/ (12)
dures, by a number of investigators." It is interesting to N,, and y are defined in Eq. (5). Using Eq. (A 13), the
note that for the two special cases, m = 0 or n = 0, the above matrix elements of x' can be written as a sum of Franck-
sum reduces to a single term containing only one Hermite Condon integrals,
polynomial. [We note parenthetically that the above sum r2 ]1/2
(6) also reduces to a single term for the case of equal fre- (m Ix'In )) = 2 (w, +'&,)
quency oscillators. ] From the recursion relation for Hermite
polynomials (A3), it follows: l1-.11 1 ,.1 - pi in!n! 1/2 '

(0In + 2))= - (01n + 1)) (40) )o )qpq

(:t + W2 (on + 2)] C40o,)p/2(4()ql2 ,

______[ w ]/2 X _ H 1 , (ly

_ ( m2) n+__ll)W(O1n)), (7)(t + o-)P
oiel + W) \n + 2) '

(m21)- ' 2  f 20)).1/21-p- qq(m + 2(0)) -- to [ (--M ]/(+ Ip) X_ H, u (i)

-),+W2 tw (m+2) (1--p --q)!
(m -pin - q)). (13) ,,.;,'

+,o( +t2)(m + 1 )m . 8 This expression was obtained earlier by Morales et al.,5

though there appears to be an error in the constants of theirIn fact, on using the one-term expressions for (01n))

and (m10)), Eq. (6) can be rewritten as expression.

(m n))X [ 2 (tW2) k k (m) 1/2(n 1/ 2 B. Exponential function exp(-2cx)
= k O ol + k k Here, in obtaining the relevant integral, we follow exact-

× (m - k 10)) (0in - k ))(9) ly the same steps as in the Appendix, Eqs. (A4)-(A6), ex-
(010)) cept there now is an extra factor of exp( - 2ct) in the inte-

Equivalent expressions have been obtained previously by grand. It leads to the following result for the integral:

Manneback6 and Smith.9 It is remarkable-and this fact has I [exp ( - 2ct);n,n;ab, y,z]
apparently not been appreciated earlier in the literature-( " - '-
that the complete Franck-Condon matrix (min)) can be = 

rr
./2 exp(c 2 - 2cy) % ,..

determined using Eqs. (7), (8), and (9) from the mere
knowledge of either (010)) and (011)), or (010)) and Xexp{ - (I - a 2)t2 - (I -b 2)t

(1t0)). + 2a( y - c), + 2[b(y - c) - zlt. + 2abt,).

(14)

Il1. MATRIX ELEMENTS OF SOME FUNCTIONS Except for the constant exp(c 2 - 2cy), Eq. (14) looks just

Now let us consider the two-center matrix elements of like Eq. (A6), and we can immediately write down the final

x1, exp( - 2cx), and exp( - cx ' ) in the harmonic oscillator result:

basis. Various matrix elements can be written in terms of I [exp( - 2ct);,n,;a,b,y ,z
integrals of the form "P

I [f(t);m,n;a,b,y,z] = exp(c 2 - 2cv) I l;m,,n;a,h -, zl. (15)

ff (t)exp (t-y) 2 ]H,(at)H, (b-z)df, The matrix element (tniexp( -- 2cx) ,') is relatcd to
I [exp( - 2ct):m,n;a,b,y.z and by using Eq. (15) one can

(10) write 0

%J.
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in(lexp( - 2cx) n)) =N,,, exp(a 2 - 2ay) = 2a1I, (in - ln- 2(m - l)I,(m - 2,n)

XI [ l;m,n;a,b,y - a,z r ' (21)
(16) or equivalently,

* where a= c[(2wtr 2 )/(o, +-o 2 )11 1 2 is introduced by a 2aI, (m,n) = I,(n + l,n) + 2m1,(rn - l,n). (22)

change of the integration variable from x to the dimension- In going from Eq. (20) to Eq. (21 ), the recursion rela-
less t =xto + to2) '

2/(2to o 2) l/2. tion for Hermite polynomials (A3) was applied to H,,_ (at).
Using the recursion relation for Hermite polynomials on the

C. Gaussian function exp(-cx2) H. (bt - z) term in Eq. (20), on the other hand, gives

The case f(t) = exp( - Ct 2) can be worked out in a 2bI,, , (re,n) = I, (m,n + 1) + 2zI, (n,n)
fashion very similar to the case of the exponential above.
Following the same steps as Eqs. (A4) and (A5), we obtain + 2n1, (m,n - 1). (23)

I [exp( - ct 2);m,n;a,b,y,z] It is important to note that from Eq. (22) or (23), the com-
_ 0 1y2) plete matrix of any power of t (for example, t') can be ob-

=/Jexp( cl2Y2)(At2) (-i2 ) tained from the knowledge of the matrix of the next lower
dt2 ,: =o t, power (namely, t'- '). We reemphasize that the matrix of

Xexp( - t _ t - 2zt2 -16
2Y2) Franck-Condon overlap integrals can be completely deter-

mined from a mere knowledge of only two matrix elements,
Xf exp _ - 2(aft, + b/3t, +6y)t ]dt, (17) (010)) and (0l1)) (or (010)) and (110))), so, in principle,

the complete matrix of any power of x can be built up from

where,8= (1 + c)- 2  only two overlap matrix elements.
The expression in Eq. (17) has essentially the same Using, in the integrands of the terms on the left-hand

form as Eq. (AS), and we can immediately write down the sides of Eqs. (22) and (23),
result by inspection,

texp[ - (t-y) = - t )exp[ - (t-y)2]

I [exp( - ct 2);m,n;a,b, yz] dt
+y exp[ - (t - y)2],

~=/3exp( - c/32y 2 )i [ 1;rn,n;ai, b/, y,z]. (18) then performing integration by parts and the necessary de-

The matrix elements (miexp( - cx2 )(n)) are related to rivatives we obtain

the above integral by all, (rn,n) = I, (m + 1,n ) - 2nabl, (n,n - 1)

(mlexp(-cx2) In)) = Nm, y exp[ I- (1 7,2 y)y2 + 2m(I -a 2) (M _ l,n) - 2ayl(in,n)
XI [ • • I/2(24)

X1,[;m,n;ya,b,/yz1]/rr , (19) and

where= [ 1 + 2cwr 2/( WI + C02) ]/ 2 is once again intro- b/If , (m,n) = I, (m,n + I) - 2mabl, (in - l,n)

duced by the change of integration variable.
Summarizing this section, the integral forf(t) = t 'can + 2n( I - b 2)1 (m,n - 1)

be written as a finite sum of integrals forf(t) = 1. The inte- - 2 (by - z)I, (m,n). (25)
grals for the exponential and Gaussian functions can each be The recursion relations for these integrals can easily be
obtained by a simple scaling of anf(t) = 1 integral, adapted to the matrix elements (mix'In)), using Eq. ( 11):

IV. RECURSION RELATIONS 
21r('I'to) 2 (mlx' 'In))

=[2(m + I )I 1/2(CO, + Co) (11 + I x'jn))
Four-term recursion relations among Franck-Condon

overlap integrals were derived by Ansbacher7 and, in equiva- - (8na 2o,) (m Ix' In - I))
lent form, by Manneback.6 These recursion relations are spe- + (2m) " 2(w, - o, ) (m - i x' n))
cial cases of the more general recursion relations, to be ob-
tained below, for the integral I [t';m,n;a,b,y,z]. In the - (0)j/0)))1/ 2

2o,(mnIx'In)), (26)
preceding section it was shown that the integrals for the ex- 21r(o)/2(mlx' 'In))
ponential and Gaussian functions could be written in terms
of I[ l;m,n;a,b,y,z] so that the recursion relations for the =[2(n + I)] /2(o, + (m0(,fl x'In + 1))

integrals for these functions are also obtained from the re- (81nw,)'1 (m - I x'I )

cursion relations for I [ t';m,n;a,b,y,z]. - _ ]

For brevity, define I, (m,n) = I [ t ';m,n;a,b, yz ] in the + (2n) '/2(a), -,) (, nx' ' n - I
following discussion. Thus, + ((o 2 /(o,)' 2 o,(tflxx'n)). (27)

I,(mn) = exp[ _ (l -y)
2]tl,,,(atH,,(bt -z)dt Equations (26) and (27) are generalized forms of Ans-

bacher's7 recursion relations for Franck-Condon overlap in-
(20) teerals which are obtained by letting I 0.

J. Chem. Phys, Vol. 85. No. 11,1 December 1986
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Equations (22) and (23) can be adapted to the integrals wheref(x) can be a power, exponential, Gaussian, trigono-
for the exponential and Gaussian functions by multiplying metric function, etc.
the equations by ( - 2c)'/l! or ( - ct)'/l!, respectively,
and then summing over 1. This yields, for the exponential V. DISCUSSION AND CONCLUSIONS
case (suppressing the constants a, b, y, and z): For the special case of equal frequency oscillators -0

2aI [t exp( - 2ct);m,n] (w, = o2 ), expression (6) for the Franck-Condon overlap
I [exp(-- 2ct);m + l,n] integral reduces to a series which can be identified as a repre-sentation of an associated Laguerre polynomial. "' Explicit-

+ 2mI (exp( - 2ct);m - l,n], (28) ly, for w, = w,wo ,

2b1 [t exp( - 2ct);m,n] '., 01 ! Y.

=I[exp(- 2ct);m,n + 1] mtnh) = ( - 1)" ("!(.-

+ 2z exp- 2ct);mnI Xexp - --wo ' ' . (33)

+ 2nI [exp( - 2ct);m,n -]. (29) 2 2w!
During their numerical evaluation of integrals of the ' -

Note that these equations relate thef(t) = exp( - 2ct) inte- form (m Ix'l n )) for the first positive system of N,, Fraser''
gral to the f(t) = t exp( - 2ct) integral. Analogous rela- and Nicholls and Jarmain 2 observed that under certain con- 0
tions for the Gaussian case can be obtained in a similar man- ditions the following equality nearly holds:
ner.

Equations (24) and (25) [or Eqs. (26) and (27)] can (mlx 2jn)) (mlxln)) (34)
be similarly adapted for integrals for the exponential and (mfxjn)) (mlxIn))
Gaussian functions. For the exponential case, Eqs. (24) and That this should be true is easily seen by using the recur-
(25) are transformed into sion relation (22). For the case w >a,, and ( >/iw,) >m,n

2a( y - c)I [exp( - 2ct);m,n] [which are equivalent' ''12 to the conditions necessary for Pr

I [ exp( - 2ct) ;m + 1,n I equality (34) to hold], it is readily seen that the ratios in Eq.
(34) are approximately equal to j r, independent of in or n.

- 2nabl [exp( - 2cit;m,n - I In order to illustrate the results of the recursion rela-

+ 2m(l - a2)I [exp( - 2ct);m - l,n], (30) tions derived above, we have numerically evaluated the

2[b( y- c) -z]I[exp( - 2ct) n] Franck-Condon factors for the A 'X,: -X IX'f and the
B 'I_-X'Y_ systems of 7Li, using Eqs. (7), (8), and (9).

I [exp( - 2ct);m,n + 11 The harmonic oscillators representing the potential curves
-2mab[exp(- 2ct);m -,n] the X, , and B electronic states have frequencies 351.43.

255.45, and 269.69 cm ', respectively, and potential mini-
+ 2n(l - b 2 )I (exp( - 2ct);m.n - 1]. (31) mum at 2.672, 3.107, and 2.936 , respectively. It is easy to

Equations (30) and (31) could have been obtained by an verify that the first five vibrational levels of the above three
alternative method using the results of Sec. III B, in which it simple harmonic oscillators have the same energy levels.
was shown that the integrals for the exponential and Gaus- within 5%, as the actual vibrational energy levels of the three
sian functions were related by simple scaling to thef(t) = I electronic states, indicating that the harmonic oscillator ap-
integral. Thus setting I = 0 in Eqs. (24) and (25) or in Eqs. proximation is reasonable for these levels. The computed
(26) and (27), and using Eq. (15) for the scaling property numbers for Franck-Condon factors are compared, in Table
of the exponential case, the recursion relations (30) and I, with the experimentally obtained values of these factors
(31) are immediately obtained. This alternative procedure for the above transitions in Li, by Hessel and co-
provides a self-consistent check on the present results. A workers.' '" To make comparison easy, we use a double ket
similar check can be easily verified for the Gaussian case notation, In)), to indicate the inth vibrational level of the -
using the scaling property (18). ground state (analogous to the double prime. ,". notation of ",N i. W,

Equations (22) and (23) or Eqs. (24) and (25) can be Hessel) and a single ket notation, it). to indicate the nth
combined to eliminate the integral on the left side in each vibrational level of th. excited A or B states (analogous to - _

case, and obtain a five-term recursion relation valid for the the single prime, c'. notation of Hesse). The results sho it

matrix elements of powers ofx. It turns out that the recur- in Table I indicate that the agreement betw.ecn comptl "d

sion relation thus obtained is very general; since it is good for factors, n(mit)) and experimental values is not encOt 'g- % ?%
any power ofx, it will be valid for any analytic function ofx ing even for :he low vibrational levels wltere the harm ,tic %
which can be expanded in a power series. Thus, oscillator is supposed to be a go d approximation. I to\ c\er.

x + we note that the agreement become, rcasonablc \% hen t lie
(mnf(X) in)) , r + I I f(x) n) designation of the .ibrational quantum numbcrs olft\mo rel-

2(r), 
INLtill~n lccls arc finterchzmged, that is. t hen thcexpcriwita;l

(n I n x I sid iI ablel \V, We do lo tllt ,,d the, rca,'oll for tihs l

, ' 0 /i: f(.\) it I '. atipuiling ,-es ,'lli

hr, Phry, VW c 85 N(. - ,t. *%, _
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TABLE I. A comparison of the Franck-Condon factors for the A ', -X 'X,' system (multipliedby 10') and

theB 'I1-X ' + system (multiplied by l0') of'Li,. A double (I))) and a single (1)) ket notation refers to the
vibrational levels of the ground and the excited electronic state, respectively.

Vibrational A 2-X 1  B 'l,-X 11

quantum
number experiment (Ref. 14) experiment (Ref. 15)
m , 1 (mn))l2 (mln)) j ((mjn)lI (mIn))I12 I(mln))12 I((min)" 1

0 , 0 53 52 53 3267 3188 3267
0 , 1 131 176 1 3149 3827 4104
0 , 2 182 270 8 1961 2103 2065
0 , 3 187 250 254 969 698 507
0 ,4 158 156 153 413 156 55

1 ,0 180 134 131 4104 3340 3149...
1 ,1 191 197 191 39 77 39

1,2 78 58 54 844 1511 2042
1 , 3 4 9 12 1692 2711 3127
1 , 4 15 134 145 1516 1657 1395

2 , 0 277 187 182 2065 2008 1961
2, 1 54 79 78 2042 942 844
2 , 2 13 15 13 1110 1345 1110
2 ,3 9 127 120 0.5 63 329
2 ,4 88 56 51 622 1834 2826

3 ,0 254 190 188 507 918 969
3 ,1 12 3 4 3127 1884 1692
3 ,2 120 98 90 329 I 0.5
3 ,3 46 45 46 1391 1508 1391
3 ,4 2 25 20 423 303 28

4 ,0 153 157 158 55 358 413
4 , 1 145 18 15 1395 1585 1516
4 ,2 51 90 89 2826 711 622
4, 3 20 4 2 28 550 423
4 ,4 84 92 84 800 661 800

To summarize, we have obtained explicit expressions respectively, can also be easily obtained with only slight mo-
for the matrix elements ofx', exp( - 2cx), and exp( - cx2), difications in the solution of the integral for the case
x being the internuclear separation, in the two-center simple f(t) = I. To this end, a detailed derivation of the integral,
harmonic basis. It is shown that in principle, the complete I( 1;m,n;a,b, y,z) -I., is given in this Appendix. Some for-
matrices of combinations of these functions could be deter- mulas, useful in the evaluation of the integral, and in obtain-
mined in terms of only the lowest two Franck-Condon over- ing recursion relations for it are presented first.
lap matrix elements. Furthermore, a very general five-term From the generating function of Hermite polynomials,
recursion relation (32) is obtained which is valid for the
matrix elements of any analytic function ofx. H,, (x)t "/n! = exp( - t 2 + 2xt).

0

the following representation for Hermite polynomials is ob-
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2x1t,, (x) = H,, (x) + 2nIl,, (x). (A3) -
APPENDIX " -APPENDIX The integral to be evaluated is

The integral " pv(

I [f();m,n:a,b,y,z] exp -- (t - v)- I//,,, 9at)I,, (t z)dt.

(A4)

f f(t)exp[ - ( - y)-2111 (at) H,, (bt z)dt Using Eq. (A2) forli hetcrmitcpolynormialsin Eq. (A4) we
obtain

(Al)Jp

with a, b'y. and zconstant, isvcry useful in theecvaluation of I,, (,)" r- > p , 2N. )
the Franck-Condon factors, and the matrix ilcmcnts of
powers of the coordintate x. The matrix ele,,ents xponct- 2 , .h/ r/ A5
tial and Gaussian functions. cxp( - 2c. ) and exp( c. ). .
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7r12( ) ) ex[-1 2 )tZ A (t ,t,) = exp[( -a)t -( - b)t
,,0o o+ 2ayt, + 2(by - z)t, + 2abt,],

- (-b 2)t 2 +2abt.t 2 +2ayt I+2(by-z)t,]. u=at +bt,+y and i= (l)" 2  (All)
(A6) Using Eq. (A6) and

Carrying out the t 2 derivatives, and using the definition U q ( a
(A2) of the Hermite polynomials leads to - H, (iu)

In= Ir,/2 (,)(1 b - k)k/2,, by -z p , q
y()I-bH k (l b)l !a'Pbq(2i)"

I) - b2) [b 2 /2 ( p H,,, q(iy); p+q<l (A12)
k~o (l-p-q)!'

X 7 )(a (2abt, )k( i we obtain the final result:

j= \at,, ,,al o I [t';m,n;a,b,yz]

Xexp[ - (1 -a 2 )tl + 2ayt,] (A7) [,/I [,.,-p

11r,2 1. (. n )(I __ 2)(n-k)/2(1 __ 2 ) ,/2 p=O q-.O

= 0 l !a P b q  H , u y

(I -a ) XI [ l;m - p,n - q;a,b, y,z1. (A 13)

XH,_k (y--,2 (A8)

since, on setting tt = 0, the only nonzero term in thej sum is
j = k. Thus the k sum runs from zero to the smaller ofm or n, •
indicated by [ m,n 1.

We can evaluate I [t ';m,n;a,b, y,z] I, by following the

same procedure as above, through Eq. (A6), and using the
standard integral, 3

t I t, 2 t 2 U2) 'G. Herzberg, Molecular Spectra and Molecular Structure. 2nd ed. (Van
exp( - + 2ut)dt = r' exp(u)(2i) 'HI (iu). Nosirand, Princeton, 1950), Vol. 1: J. 1. Steinfeld, Molecules and Radi-

ation, 2nd ed. (MIT, Cambridge, 1985).
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Differential and integrated cross sections for the elastic scattering of low- and intermediate-energy
(3-300 eV) positrons and electrons by argon atoms are calculated. Higher transport cross sections,
representing moments of I - (cosO)m, for these systems are also obtained for n = 1-4. Model poten-
tials are used to represent the interactions between positrons or electrons and argon atoms. For each
impact energy, the phase shifts of the lower partial waves are obtained exactly by numerical integra-
tion of the radial equation. The Born approximation is used to obtain the contribution of the higher
partial waves to the scattering amplitude. The phase shifts of the seven lowest partial waves are tab-
ulated for various impact energies of positrons and electrons.

I. INTRODUCTION and Gus'kov et al.'5 (0.025-1.0 eV). The differential
cross sections (DCS) for the elastic scattering of electrons

Since the pioneer work of Ramsauer, the study of elec- by argon have been measured by Mehr 16 (5-1000 eV,
tron scattering by noble gases has been of considerable 20"-155"), Schackert 17 (40-150 eV, 30"-150*), Brom-
theoretical and experimental interest. Observations and berg' 8 (200-700 eV, 2*-30*), Williams and Willis' 9

calculations of both the total collisional as well as elastic (20-400 eV, 20"-150'), Jansen et al. 20 (100-3000 eV,
differential and integrated cross sections for the scattering 5"-55"), Lewis et al.2' (15-200 eV, 20"-140'), Vu kovi•
of electrons by rare-gas atoms have been made. In partic- and Kurepa22 (60-150 eV, 5*-150), DuBois and Rudd 23

ular, low-energy total collisional cross sections, for elec- (20-800 eV, 2'--150"), Gupta and Rees 24'25 (100 eV,
tron scattering, exhibit a Ramsauer-Townsend (RT) 10-50), Williams2 6 (0.5-20 eV, 15'-150*), Srivastava
minimum for Ar, Kr, and Xe. Observations of the et al.27 (3-100 eV, 20-135), Andrick2" (1-20 eV,

scattering of positrons by rare-gas atoms are relatively re- 0'-180"), Qing et al. 29 (10-50 eV, 40'.-110*), and Filipo-
cent. "First generation experiments" on positron scatter- vi6&0 (10-100 eV, 20"-150°). From experimental angular S
ing included observations of the total collisional cross sec- distribution measurements, integrated elastic cross sec-
tions. 2 It was then observed that the scattering of posi- tions have also been calculated in some cases. Semiempir-
trons by only the lighter rare-gas atoms He, Ne, and pos- ical cross sections for elastic and inelastic scattering of
sibly Ar, exhibited the RT minimum. Thus argon may electrons from argon in the energy range 20 to 3000 eV
play a unique role in exhibiting the RT minimum for the have been obtained by de Heer et al.3' Momentum
scattering of both the electrons and the positrons. With transfer cross sections for electron-argon scattering have
the advent of high-intensity positron beams, it has now been measured or derived from experimental parameters
become feasible to carry out "second generation experi- by McPherson et al.32 (0.08-4 eV), Golovanivsky and
ments" for measurements of angular distribution of posi- Kabilan33 (0.005-0.6 eV), and Haddad and O'Malley 34

trons elastically scattered by rare-gas atoms. The impetus (0-4 eV). Theoretical studies of electron- or positron-
for the present paper is provided by the recent measure- argon scattering are characterized by the method used as
ment 3 of differential cross sections for elastic scattering of well as by the potential used in the calculations. Theoreti-
intermediate-energy positrons by argon atoms. In the cal calculations for electron scatt,,;ng by argon have been -

present calculations of elastic scattering of electrons and performed by Walker35 and by Fink and Yates%3 using the
positrons by argon, an attempt is made to use as similar relativistic approximation; Thompson, 37 Garbaty and La-
(within physical consistency) potential for the two projec- Bahn, 3 s Yau et al.,39 and Dasgupta and Bhatia4 ° using
tiles as is possible. the polarized orbital method; Fon et al.,4 1 and Pell V""I

Elastic and total collisional scattering of electrons by ar- et al.42 using the R-matrix method; Pindzola and Kelly, 43  - -

gon has been given considerable attention, both experi- Amusia et al.,44 McCarthy et al., Joachain et al., '

mentally as well as theoretically, during the past sixty and Staszewska et al.48 using optical model potentials;
years. 4 55  Webb4 has summarized the electron-argon Berg et a. 4 9 and Datta et al. 5° using model potentials;
scattering results prior to 1935. The later experiments on Khare and Shobha 5' using the first Born approximation.
integrated elastic and total collisional cross sections were McEachran and Stauffer -2 using adiabatic exchange ap-
performed by Aberth et al.5 (15-25 eV), Golden and Ban- proximation; and Haberland et al.53 using Kohn-Shani-
del6 (0.1-21.6 eV), Kauppila et al.7 (1.5-15.7 eV), type one-particle theory. Momentum transfer cross sec-
Wagenaar and de Heers (25-750 eV), Wagenaar and de tions for electron-argon scattering are obtained by Frost
Heer9 (20-100 eV), Kauppila et al.'0 (15-800 eV), Nick- and Phelps54 from transport coefficients and by Millo%
el et al. (4-300 eV), Jost et al.'2 (0.08-54.423 eV), et al.5 by a swarm technique.
Ferch et al. 13 (0.08-20 eV), Charlton et al. 14 (2-50 eV), All measurements of positron scattering by argon have

35 2051 c 1987 The American Physical Society 0



2052 SULTANA N. NAHAR AND J. M. WADEHRA 35

been made in the last decade or so. Measurements of total f(O)=211 2i6 (

collisional cross sections for positron scattering from ar- 2- i (21 + )(e '-l1?P1(cos9),
/i = 0

gon include those by Canter et al.36 (2-400 eV),
Jaduszliwer and Paul"7 (4-9 eV), Kauppila et al.5 8  where 0 is the scattering angle. Equation (1) is solved by

(0.4-18 eV), Coleman et al.5 9 (2-960 eV), Griffith using the Numerov procedure and the first L phase shiftsr,

et al.60 (30-800 eV), Tsai et al.61 (25-300 eV), Brenton are obtained exactly. L depends on the energy of the in-

et al.62 (200-1000 eV), Sinapius et al.63 (1-6 eV), Cole- cident projectile. For large I ( > L) the exact phase shifts

man et al.64 (2-50 eV), and Kauppila et al.to (15-800 81 are approximately equal to the Born phase shifts 6BI,
eV). A recent summary of positron-gas scattering is given 2k j (5)
by Stein and Kauppila. 65 Measurements of the angular exp(i8Bl)sin8Bl=TBI 2 0 r 1(kr)V(r)d(

distribution for positron-argon elastic scattering have been The typical values of L corresponding to the impact ener-
made by Coleman and McNutt" (2.2-8.7 eV, 20-60*) gies of 3 and 300 eV are 4 and 20, respectively.
and by Hyder et al.3 (100-300 eV, 30*-135°). On the The infinite sum in Eq. (4) is then approximated by
theoretical side, positron-argon scattering calculations
have been carried out by Joachain etal.46 and Khare f(21 + [exp(6 1)--exp(2i )+I
et al.67 using optical model potentials; McEachran 2ik I --
et al.68 and McEachran and Stauffer 69 using the polarized c
orbital method; and Datta et al.50 and Arifov and XPI(cosO)+fB(O) (6)

Zhuravleva 70 using a model potential. In the present
study of elastic scattering of low- and intermediate-energy where fB is the scattering amplitude in the Born approxi-
positrons and electrons from argon atoms, model static mation. For a spherically symmetric potential V(r),
and Buckingham-type polarization potentials for the posi- 1
tron scattering and the same static (albeit with opposite fB( 0 ) 1 (
sign) and polarization potentials along with an exchange 2ik 1=0
potential for electron scattering have been used. The re-
sults of the present calculation are compared with the re- = -2 r2 sin(r) V(r)dr , (7)
cent experimental observations of positrons and electrons 0 qr

elastically scattered from argon. where q =2k sin(0/2) is the momentum transfer. The

differential and the integrated elastic cross sections are

II. THEORY do (8)d£1 - I(0) [ 2(8),.

Consider a projectile of charge ep, with laboratory-d,
frame impact energy E, being scattered elastically by a a, =2r f JsinOdO (9)
target with central potential V(r). The scattering can be fo

described by the radial part, u(r), of the lth partial wave I

of the wave function which satisfies (in atomic units) The transport cross sections (including the momentum 0
transfer, n = 1, cross section) are

(d' (+ 1) 1 ) dor
--2 r-2 +2A[E-V(r)] ut(r)=O. (1) Or(") =21T"  (I1-cos"0) d-l sinOdO . (10)

Here A is the reduced mass of the system. The asymptot-
ic form of the radial part of the wave function is TABLE I. Range of the values and the value used for the pa-

ul(r) --* krUjt(kr)-(tan81)nl(kr)] , (2) rameter d (in units of a0) for various impact energies.

r-* d (in units of a0)

where k 2 =2 1iE. j, and n, are the spherical Bessel func- E (eV) Range of values Value used

tions of the first and the second kind, respectively. (For 3 1.38-1.4 1.39
their numerical evaluation, see Appendix A.) For posi- 5 1.25-1.45 1.35
tron and electron impact, It= 1. 81 is the energy- 10 1.65-1.8 1.7

dependent phase shift caused by the potential V(r). From 15 1.6 -1.8 1.6
the values of the wave function at two adjacent points r 20 1.7 -2.75 1.75-%
and r +h (h <<r), in the asymptotic domain, one can ex- 30 1.3 -1.7 1.65

tract the phase shift 40 1.35-1.7 1.6
50 1.3 -2.0 1.5 0

(r +h)u 1(r)j(k(r +h))-rul(r +h)jl(kr) 75 1.65-2.35 2.0
tanbi rut(r +h)n(kr)-(r +h)u 1 (r)n,(k(r +h)) 100 1.5 -2.5 2.0 N

150 1.5 -3.0 2.0
(3) 200 1.5 -3.0 2.0

Various phase shifts are used to obtain the scattering 250 1.5 -3.0 2.0
amltd s300 1.7 -3.0 2.0

amplitude as-
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The optical theorem V(r)= Ze _ e f 1'(rl,r 2 ,.... rz)[ 2

aV,(r)Imf(0) (11) r i'=l 1

X dr "drz , (14)
is used as a self-consistent check on the present calcula- r-ri 1
tions. In the present calculations of elastic scattering of where Z is the nuclear charge of the target atom.
electrons and positrons by argon atoms, the potentials q(rl ... , rz) is the antisymmetrized Hartree-Fock wave
used are function of the target and is expanded in terms of the

V(r)= V(r)+ V(r) for positron impact (12) Slater-type orbitals:
M

Vs(r)+ Vp(r)+ Vex(r) for electron impact. (13) PxP(r)= T A (; ,p,i)rn')-lexp[ -- (pi)r]Y(
i=t

Here Vs(r) is the static potential of the target atom, ob- O__$ (r)Yt(?)
tained by averaging over the motion of the target elec-
trons: with

A (X,p,i)=c (Xp i)[2t(p,i)]n p'!)+12/1[2n (p,i)]!} 1/2 (15)

The values of c (X,p,i), g(p,i), and n (p,i) are taken from the tables of Clementi and Roetti.7' Defining, for convenience,

v=n(p,i)+n(p~j), z= (pji)+(p,j), a A(L,pJi)A(4,p~j)v!, s=z- ' - ], m=[l/(t+l)!--1/(t)]/z v - t , (16)

where i, j, and t are integers, the static potential for argon atom is given by

V(r)=ep NL p a exp( -zr) + 1 , (17)

)=lp=0 i=1j=1 t=0

where N is the number of occupied shells in the atom and Nx0 is the number of electrons in the orbital (X,p). Vp is tak-
en to be a model polarization potential of the Buckingham type, 4

Vp(r)= -- ar 2 /(r 2+d 2 ) 3 , (I8)

where a is the static dipole polarizability. d is an energy-dependent adjustable parameter determined by fitting th- calcu-
lated differential and integrated cross sections for the elastic scattering of electrons by argon atoms with the experiment--]
values of the same at a particular energy. The same value of d is then used for positron-argon scattering calculations at
that energy. The values of the parameter d for various impact energies are given in Table I. Khare et al.,67'72 who have
used a very similar polarization potential, have expressed the parameter d as a linear function of k in their work. The
exchange potential, Ve.(r), for a closed-shell atom is taken to be73

r [E-VD(r)l- [E-Vn(r)]2 + 7 ,7, Nx Oxp(r) 12  (19)Vi~r = 7p

where VD is the direct interaction potential, namely, VD = V + Vp. 0; (r) is the radial part of the Slater-type orbital as
in Eq. (15). Vex(r) is a shorter'range and much weaker potential than the static potential. Hence it is excluded from the
computation of the phase shifts of higher partial waves using the Born approximation. For the polarization potential,
the integral for the lth Born phase shift, Eq. (5), defined by TpBI, is (for its derivation see Appendix B)

Tpt= -ak2  -(21 +3)ii +l(kd)kl(kd)+i(21 +3)/(4k2 d2 )

-[kd+(21+1)(2+3)/(2kd)]il(kd)kl(kd)+kdil+ (kd)k+,(kd)I , (20)

where i1 and k, are the modified spherical Bessel functions of the first and the third kind, respectively. (For their nu- ,'-
merical evaluation see Appendix A.) The Born amplitude, Eq. (7), for the polarization potential defined above, is Pe,

f p =ira( 3-qd)exp( -qd) /( 16d) . (21)

For the static potential, the Ith Born phase shift, Eq. (5), defined to be TBr, is (for details see Appendix C)

k i=11= 2k 2  t-) dz' ' 2k2

where v, z, a, s, and m are defined in (16). Q, is the Legendre function of the second kind. The corresponding Bornscattering amplitude, fns, is%

1% ,". A
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N X-1 MM v-2
f=-2ep __ _ N _ a 2s + (_ 1+1r d. (23)

X=tp=0 gi= Z q r= - d2 t
+
1

. z2 q 2

For a given impact energy, the polarization potential pro- first part of the scattering amplitude obtained from the

vides the major contribution and the static potential a first L exact phase shifts [see Eq. (6)] is smaller for posi - .
non-negligible contribution to the phase shifts of higher tron impact than for electron impact and thus the relative
partial waves especially for the case of positron impact. contribution of the Born-approximation part with static
The reason is that due to the opposite nature of the static interaction is more significant for positron impact than
and polarization interactions for the positron case, the for electron impact.

III. RESULTS AND DISCUSSION

(e- Ad The differential and integrated cross sections for the
elastic scattering of electrons from argon are shown in

20 OV (1) (e-or.E0e10' 0

100 * /
1 5 c V 1 0 0 -0

C , , , I'' , ,/

(e- , Ar), E0eV 10e

o' .

100 (e-. Ar), E=40 eV

0 0'0 10'

Sid' (0 At0 id 0

10.1o0 0

(e- A), AreV) 0 .

0 v

L.

S0 0 80

18 0
(9 Ar), M='e

0 0>

0 00

10d 0

~0

FIG. 1. Differential cross sections for the elastic scattering of %.'A
electrons by argon at various impact energies. Solid lines are the 100

present theoretical curves. The number in parenthesis fol20wing 20 40 80 80 100 120 140 160o 1o

an energy value indicates the power of ten by which the cross Scattering Angle (deg)
section values are multiplied. The experimental values are open FIG. 2. Sanic as Fig. I except the experimncinal %alues are
circles, Ref. 27 for 3, 5, 10, and 15 eV and Re, 19 for 20 cV; open circles, Ref. 27 for 30 and 50 cV and Ref. 11) for 40 eV:
closed circles, Ref. 28 for 3, 5, 10, and 15 eV and Ref. 23 for 2(0 closed cirelcs, Ref. 3(0 for 30 !wd 407 cV and Ref. 23 for 50 cV:
eV. diamronds, Rcf. I) for 30 cV.
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Figs. 1-4. The single adjustable parameter d in the po-(e-, Ar), E=O0 eV larization potential has been varied, for each impact ener-

gy, to fit, as closely as possible, the experimentally ob-
i' served differential as well as integrated cross sections for

elastic scattering of electrons from argon. It was noticed 0

that a finite range of values of d could be used for such a
10' fitting procedure. Table I gives the range of values of d

- along with the final value of d used for computing the
C 0 o0 present cross sections. It is seen by observing the size of

000 0 the range of values of d from Table I that the cross sec-

00 tions are more sensitive to the value of d at lower energies
0

(e Ar' E75 eV

(e, At)

Ii5 d 0 10"
10 1

0 8 00 0 o

300013

10 "2 _0_ 200eVi1
0 20 40 60 80 100 120 140 o6o IO

Scattering Angle (deg) 16oV0lo

FIG. 3. Same as Fig. 1 except the experimental values are
open circles, Ref. 27 for 75 and 100 eV; closed circles, Ref. 30 108 •
for 75 eV and Ref. 22 for 100 eV; diamonds, Ref. 25 for 100 eV. . I

',

0 106 '-

0 0

0ci0 0

10. ==10o

10 00~~~ld 'vm.

100 40 6 0.00. .0.10.1. . 18
0a,20 Scattering Angle (deg) 

0 20 40 60 so 100 120 140 160 180
Scattering Angle (deg) FIG. 5. Differential cross sections for the elastic scattering of

positrons by argon at various impact energies. Solid lines are
FIG. 4. Same as Fig. 1 except the experimental values are the present theoretical curves. The number in parentheses fol-

open circles, Ref. 19 for 150, 200, 250, and 300 eV; closed cir- lowing an energy value indicates the power of ten by which the
des, Ref. 22 for 150 eV, Ref. 23 for 200 eV, and Ref. 20 for 300 cross section values are multiplied. The experimental values are
eV; diamonds, Ref. 18 for 300 eV. from Ref. 3.
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TABLE II. Differential and integrated cross sections (ao sr - ') for elastic scattering of electrons from argon at E=3-300 eV.

E(eV) 3 5 10 15 20 30 40

0 (deg)

0 0.147[1]' 0.7601] 0.377[2] 0.602[2] 0.571[2] 0.472[2] 0.460[2]
5 0.1021] 0.6081] 0.341[2] 0.557[2] 0.523[2] 0.409[2] 0.373[2]

10 0.717 0.4811] 0.300[2] 0.509[2] 0.476[2] 0.359[2] 0.308[2]
15 0.560 0.3791] 0.262[2] 0.455[2] 0.426[2] 0.312[2] 0.254[2]
20 0.585 0.31111] 0.224[2] 0.396[2] 0.371(2] 0.267[2] 0.208[2]
25 0.742 0.2711] 0.189[2] 0.335[2] 0.314(2] 0.222[2] 0.166(2]
30 0.101[1] 0.2571] 0.156(2] 0.274[2] 0.256[2] 0.179(2] 0.129(2]
35 0.1331] 0.2651] 0.127[2] 0.215[2] 0.200[2] 0.138(2] 0.955(1]
40 0.170[1] 0.291(1] 0.103(2] 0.161[2] 0.149(2] 0.101(2] 0.673(1]
45 0.2071] 0.3301] 0.843[l] 0.115[2] 0.104(2] 0.685(1] 0.440(1]

50 0.242(1] 0.3771] 0.699(1] 0.7771] 0.6731] 0.4221] 0.257(1]
55 0.2721] 0.424(1] 0.5991] 0.4961] 0.391(1] 0.225[1] 0.12511]
60 0.295(1] 0.466(1] 0.5341] 0.302(1] 0.1961] 0.916 0.423
65 0.3101l] 0.498[1] 0.491[l] 0.1871] 0.808 0.198 0.492f - 1]
70 0.315[1] 0.513(1] 0.461(1] 0.134(1] 0.322 0.110[ - 1] 0.619[ - I]
75 0.310[1] 0.510(1] 0.4331] 0.125(1] 0.341 0.238 0.368
80 0.295(1] 0.488(1] 0.3971] 0.140(1] 0.686 0.739 0.859
85 0.273(1] 0.447(1] 0.3501] 0.164(1] 0.118(1] 0.1371] 0.142(1]
90 0.24311] 0.3901] 0.2901] 0.183(1] 0.168(1] 0.198(1] 0.193(1]
95 0.208[1] 0.3221] 0.220(1] 0.187(1] 0.205(1] 0.247(1] 0.231(1]

100 0.171(1] 0.248(1] 0.145(1] 0.176(1] 0.224(1] 0.275(1] 0.25011]
105 0.13411] 0.177(1] 0.771 0.151(1] 0.222(1] 0.279(1] 0.247(1]
110 0.990 0.113(1] 0.252 0.121(1] 0.204(1] 0.259(1] 0.223(1]
115 0.685 0.643 0.120(--1] 0.951 0.174(1] 0.219[1] 0.183(1]
120 0.446 0.358 0.150 0.864 0.144[1] 0.1681] 0.134(1]
125 0.281 0.311 0.741 0.1061] 0.122[1] 0.1141] 0.843
130 0.199 0.519 0.182(11 0.164[1] 0.117(1] 0.663 0.412
135 0.197 0.980 0.339(1] 0.264(1] 0.137[1] 0.321 0.119
140 0.269 0.1661] 0.5391] 0.407(1] 0.185(1] 0.172 0.103[- 11
145 0.403 0.2521] 0.773(1] 0.586(1] 0.2611] 0.234 0.101
150 0.581 0.350[1] 0.103(2] 0.7931l] 0.358[1] 0.495 0.375 %
155 0.781 0.4511] 0.128(2] 0.101(2] 0.469(1] 0.912 0.791

160 0.985 0.5481] 0.152[2] 0.122(2] 0.583(1] 0.141(1] 0.128(1]
165 0.117(1] 0.6331] 0.173(2] 0.141[2] 0.688(1] 0.192(1] 0.177(1]
170 0.131(1] 0.700(1] 0.190(2] 0.156(2] 0.773(1] 0.236(1] 0.21911]
175 0.141(1] 0.742(1] 0.200[2] 0.166[2] 0.828[1] 0.2651] 0.247(1]
180 0.1441] 0.755[1] 0.204[2] 0.169[2] 0.8471l] 0.275(1] 0.257(1]

at 0.207[2] 0.393[2] 0.763[2] 0.866[2] 0.728[2] 0.511(2] 0.396[2] - "

E (eV) 50 75 100 150 200 250 300

0 0.488[2] 0.474[2] 0.505[2] 0.555[2] 0.595[2] 0.630(2] 0.661(2] .

5 0.374[2] 0.332[2] 0.334[2] 0.337[2] 0.341[2] 0.344[2] 0.347[2]
10 0.293[2] 0.244[2] 0.232[2] 0.218[2] 0.208[2] 0.201[2] 0.194(2]
15 0.229[2] 0.180(2] 0.161(2] 0.138(2] 0.123(2] 0.111(2] 0.102[2]
20 0.177(2] 0.129[2] 0.107[2] 0.824(1] 0.679(1] 0.581[1] 0.509(1]
25 0.134(2] 0.896(1] 0.685(1] 0.470(1] 0.363(1] 0.300[1] 0.25911]
30 0.986(1] 0.597(1] 0.419(1] 0.262[1] 0.198[1] 0.166(1] 0.147[]
35 0.699(1] 0.3801] 0.246(1] 0.149(1] 0.119(1] 0.105[1] 0.963
40 0.471[1] 0.228[] 0.140(1] 0.911 0.809 0.760 0.713
45 0.2941l] 0.126(1] 0.789 0.632 0.627 0.605 0.564
50 0.162(1] 0.629 0.465 0.508 0.532 0.506 0.460,
55 0.729 0.290 0.332 0.463 0.476 0.435 0.382
60 0.221 0.175 0.324 0.457 0.437 0.378 0.319
65 0.516f-1] 0.228 0.394 0.467 0.404 0.329 0.207
70 0.162 0.395 0.504 0.475 0.370 0.283 0.223
75 0.475 0.621 0.620 0.470 0.330 0.239 0.183
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TABLE I. (Continued).

0E (eV 50 75 100 150 200 250 3000egdeg

80 0.902 0.853 0.713 0.445 0.282 0.195 0.149 -W 0

85 0.1351] 0.1051l] 0.760 0.397 0.229 0.154 0.119 '-
90 0.1741] 0.11611] 0.749 0.327 0.173 0.117 0.948[ -1]
95 0.199(1] 0.1181l] 0.678 0.244 0.121 0.869[ -1] 0.778[ -1]

100 0.2081] 0.109[1] 0.555 0.158 0.769[-1] 0.668[-1] 0.691[-1]
105 0.198[1] 0.921 0.400 0.818[ -1] 0.485[ -1] 0.593[ -1] 0.697[ -1]
110 0.1721] 0.693 0.239 0.286[ -1] 0.412[ -1] 0.668[ -1] 0.804[ -1]
115 0.1351] 0.449 0.103 0.113[-1] 0.592[-1] 0.904[-1] 0.101
120 0.925 0.238 0.236[-1] 0.401[-1] 0.105 0.131 0.133
125 0.532 0.104 0.263[-1] 0.121 0.180 0.187 0.173
130 0.237 0.869[-1] 0.130 0.257 0.282 0.257 0.221
135 0.971[ -1] 0.210 0.343 0.444 0.408 0.339 0.276
140 0.145 0.482 0.662 0.676 0.552 0.429 0.334
145 0.387 0.889 0.1071] 0.939 0.706 0.524 0.395
150 0.799 0.14011] 0.1541] 0.122[1] 0.864 0.617 0.454
155 0.133[1] 0.1981] 0.2041] 0.1501] 0.102[1] 0.706 0.509
160 0.1921] 0.2561] 0.2521] 0.1761] 0.1151] 0.786 0.558
165 0.249[1] 0.3091] 0.2951] 0.1981] 0.127[1] 0.853 0.599
170 0.2961] 0.3521] 0.329[1] 0.2151] 0.1361] 0.903 0.630
175 0.3271] 0.3791] 0.351[1] 0.2261] 0.142[1] 0.934 0.649
180 0.3381] 0.38811] 0.358(1] 0.230(1] 0.14411] 0.945 0.655

a 0.333[2] 0.234[21 0.192[21 0.15021 0.128[2] 0.114[2] 0.10312]
aThe notation a (b] means a X 1O.

than at higher energies. The reason possibly is that the values is given in Figs. 1-4 and in Tables IV and V. The
polarization interaction plays a more significant role at calculated DCS curves for elastic scattering of electrons
lower energies. It was also noticed that variation of d has from argon are in good agreement with the measured
a significant effect on the location of the minima and the values of Srivastava et al.,27 Andrick, 28 DuBois and
maxima of the DCS curves and on the value of the DCS Rudd, 23 and Filipovi630 at lower energies ( < 50 eV) and
at those locations, especially at low energies. Variation of with Vu~kovi6 and Kurepa,2 2 and DuBois and Rudd 23 at
d also affected the DCS in the forward direction at all en- higher energies (100 < E < 200 eV). However, the agree-
ergies. Hence the DCS curves could be moved up and ment with Srivastava et al.

2 7 and Filipovi630 at larger an-
down near the forward direction by changing the value of gles becomes progressively poorer as the electron-impact
d whereas the shape of the DCS curves at higher angles energy becomes large. The differential cross sections mea-
stayed about the same. sured by Williams and Willis1 9 are almost always lower

Within the range of values ot d, shown in Table I for than our calculated cross sections at the minimum points.
various electron-impact energies, the computed DCS The integrated elastic cross sections given in Table IV are
curves and the integrated elastic cross sections remain consistent with the available experimental values except
close to the corresponding experimentally measured with those of Srivastava et al.27 which are lower than our WN
values. The value of d that, in our judgment, gave the calculated values. The transport cross sections, which "
best fitting was used for final computation of differential represent the moments of I - (cosO)', and which are relat-
and integrated elastic cross sections for the scattering of ed to the momentum transfer or diffusion cross section S
both the electrons as well as the positrons. The DCS (for n= 1), viscosity and thermal conductivity cross sec-
curves in the forward direction for positron impact are tion (for n=2), etc., 74 for both electrons and positrons are u d.
more sensitive to the value of d than the corresponding tabulated in Table V. Comparison in Table V of the
curves for electron impact due to the tendency of cancel- present momentum transfer cross sections for the
lation between the static and polarization interactions for electron-argon system with the corresponding experimen-
the positrons. The differential cross sections for the elas- tal values shows reasonable agreement except with the re-
tic scattering of positrons from argon are shown in Fig. 5. suits of Ref. 27. Phase shifts of the seven lowest partial
Numerical values of the differential and integrated elastic waves (I =0- 6) for various impact energies of electrons
cross sections for the scattering of electrons and positrons and positrons are presented in Table VI and compare
from argon are provided in Tables II and Il1. favorably with the available measured alucs.

A comparison of the various cross sections calculated The DCS curves for thc elastic scattering of positrons
here, for electron scattering, with corresponding measured by argon at various energies are sho %n in Fig. 5. These
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TABLE I1. Differential and integrated cross sections (ao sr2 ) for elastic scattering of positrons from argon at E = 3-300 eV.

3 5 10 15 20 30 40

0 0.295[1]' 0.3351] 0.2121] 0.263[1] 0.2391] 0.276[1] 0.302[l]
5 0.2091] 0.2101] 0.1141] 0.1271] 0.1341] 0.167[1] 0.199[1]

10 0.140(1] 0.1221] 0.676 0.875 0.1351] 0.1931] 0.252[1]
15 0.795 0.626 0.651 0.983 0.176[1] 0.253[1] 0.325[1]
20 0.441 0.321 0.832 0.128[1] 0.220[1] 0.299[1] 0.365[1]
25 0.220 0.189 0.10911 0.160(1] 0.2511] 0.31811 0.36411]
30 0.108 0.183 0.1331] 0.1851] 0.263[1] 0.309[1] 0.332[1]
35 0.795[- 1] 0.252 0.1531] 0.198[1] 0.259[1] 0.281[1] 0.284(1]
40 0.107 0.364 0.1651] 0.2011] 0.242[1] 0.244[1] 0.232(1]
45 0.170 0.488 0.1711] 0.195[1] 0.218[1] 0.2041] 0.184[1]
50 0.256 0.615 0.170[l] 0.182[1] 0.191p1] 0.167[1] 0.143(1]
55 0.348 0.724 0.1651] 0.1661] 0.1641] 0.1351] 0.112[1]
60 0.445 0.819 0.1561] 0.1481] 0.1381] 0.1091] 0.888
65 0.536 0.890 0.144[1] 0.131[1] 0.116[1] 0.888 0.722 0
70 0.617 0.937 0.1321] 0.114[] 0.981 0.737 0.605
75 0.689 0.968 0.120[1] 0.990 0.833 0.626 0.523
80 0.747 0.976 0.108[1] 0.861 0.716 0.545 0.464
85 0.796 0.973 0.967 0.753 0.626 0.485 0.419
90 0.830 0.954 0.869 0.665 0.556 0.441 0.384
95 0.855 0.929 0.782 0.594 0.504 0.407 0.355
100 0.870 0.896 0.707 0.538 0.464 0.379 0.330 0

105 0.877 0.860 0.645 0.493 0.432 0.357 0.309
110 0.879 0.823 0.592 0.459 0.408 0.337 0.289
115 0.873 0.783 0.549 0.432 0.388 0.320 0.272
120 0.865 0.746 0.514 0.411 0.371 0.304 0.257
125 0.853 0.709 0.486 0.394 0.357 0.291 0.244
130 0.841 0.676 0.463 0.381 0.345 0.279 0.232
135 0.826 0.645 0.445 0.370 0.335 0.268 0.222
140 0.812 0.618 0.431 0.361 0.326 0.259 0.213
145 0.799 0.594 0.420 0.354 0.318 0.251 0.206
150 0.785 0.572 0.411 0.348 0.311 0.243 0.200 ."r
155 0.775 0.557 0.404 0.343 0.305 0.238 0.195
160 0.763 0.541 0.399 0.339 0.300 0.233 0.191
165 0.757 0.531 0.395 0.336 0.297 0.230 0.188 •170 0.750 0.523 0.392 0.334 0.294 0.227 0. 186
175 0.747 0.518 0.391 0.333 0.293 0.226 0.184
180 0.749 0.520 0.390 0.332 0.292 0.225 0.184

al 0.8421] 0.9271] 0.118[2] 0.113[2] 0.117[2] 0.109[2] 0.104[2]

' E (eV) 50 75 100 150 200 250 300
0 (deg) ,%

0 0.334[1] 0.3651l] 0.4261] 0.5321l] 0.6231] 0.7041l] 0.7771]
5 0.2191] 0.493(1] 0.6401] 0.9031] 0.113[2] 0.132(2] 0.14912]

10 0.2861] 0.653(1] 0.809(1] 0.104[2] 0.119(2] 0.129(2] 0.1362]
15 0.3641] 0.6801] 0.77811] 0.8751] 0.901(1] 0.892(1] 0.865(1]
20 0.3961] 0.602(1] 0.6301] 0.618(1] 0.573(1] 0.5221] 0.47311]
25 0.37911] 0.477(1] 0.459[1] 0.39711] 0.339(1] 0.2921] 0.255[1]
30 0.3311] 0.352(1] 0.3141] 0.248(1] 0.202(1] 0.171(1] 0.148[1]
35 0.2701] 0.251(1] 0.211(1] 0.1591] 0.129[1] 0.110[] 0.958 .
40 0.211(1] 0.1771] 0.144(1] 0.1091] 0.894 0.768 0.673
45 0.1621] 0.127[] 0.1041] 0.798 0.665 0.571 0.497 , A
50 0.1231] 0.950 0.789 0.620 0.517 0.439 0.377
55 0.947 0.746 0.632 0.500 0.411 0.344 0.292
60 0.751 0.612 0.524 0.411 0.333 0.275 0.230
65 0.616 0.519 0.445 0.343 0.273 0.222 0.184
70 0.524 0.450 0.383 0.289 0.226 0.182 0.150
75 0.459 0.395 0.332 0.245 0.190 0.152 0.124
80 0.410 0.350 0.290 0.211 0.161 0.128 0.104
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TABLE 111. (Continued).

E (eV) 50 75 100 150 200 250 300
0 (deg)-,_

85 0.372 0.312 0.256 0.183 0.138 0.109 0.886[-l]
90 0.340 0.280 0.227 0.160 0.120 0.943[ -1] 0.762[ -1]
95 0.313 0.252 0.202 0.141 0.106 0.824[ -1] 0.664[ -1]

100 0.290 0.229 0.182 0.126 0.937[ -11 0.728[1-11 0.584[ -11
105 0.269 0.209 0.166 0.114 0.839[ -1] 0.6491-l1 0.520 -I]
110 0.250 0.192 0.151 0.103 0.757[ -1] 0.584 -1] 0.467[ -1]
115 0.234 0.178 0.140 0.944 -1] 0.690[ -11 0.5301 -1] 0.423[ -11
120 0.220 0.166 0.130 0.871[ -1] 0.633[-1] 0.485 -1] 0.387 -I1
125 0.208 0.156 0.121 0.808[ -1] 0.586[1-1] 0.448[ -1] 0.357[ -1]
130 0.197 0.147 0.114 0.756[ -1] 0.546[ -11 0.417[1-1] 0.332[1-1]
135 0.188 0.140 0.108 0.712[ -1] 0.513[1-1] 0.391[ -1] 0.311[ -1]
140 0.180 0.133 0.103 0.675[ -11 0.485[ -11 0.369[1-1] 0.293[ -1]
145 0.174 0.128 0.982[ -1] 0.644[-1] 0.462[-11 0.351(-Il 0.279-I]
150 0.168 0.124 0.946 -1] 0.619[ -1] 0.443[ -11 0.336[1-1] 0.267[1-1]
155 0.164 0.120 0.917[ -1] 0.598[ -1] 0.427[1-1] 0.325[ -1] 0.258[ -1]
160 0.160 0.117 0.894[ -1] 0.582[- 1] 0.415 -11 0.315[ -1] 0.250[ -1]
165 0.158 0.115 0.877[ -1] 0.569[ -1] 0.406[ -1] 0.308[ -1] 0.245[ -1]
170 0.156 0.114 0.864[ -1] 0.561[ -11 0.400[ -1] 0.303[-1J 0.2411 -11
175 0.155 0.113 0.8571 -1] 0.556 -1] 0.396[1-1] 0.300[ -1] 0.238[ -1]
180 0.155 0.113 0.8551 -1] 0.554[ -1] 0.395[ - 1] 0.299[1-1] 0.238[ -1]

0, 0.973[1] 0.102[1 0.95611] 0.861[l] 0.791[1] 0.736(t] 0.690[1]

'The notation a [b] means a x 10 b.

curves show a minimum at low energies which shifts to- change in either the incident projectile energy or the
ward the forward direction with increasing impact energy. scattering angle is associated with an appreciable increase
The increasing depth of this minimum on lowering the in the differential scattering cross section. The low-
impact energy suggests the existence of the critical point energy critical points for various positron-rare-gas-atom
for the positron-argon system. The critical points systems have been predicted by Wadehra et al.7 5 So far
represent the points of minimum scattering, where a small the measurements of the angular distributions of elastic

2) With
TABLE IV. Comparison of calculated integrated elastic cross sections (in units of ao)wt the ex-

perimental values.

E Present

Projectile (eV) value of o1  Experimental value of o1

e- 3 20.66 20.83(7),- 19.48(12), 17.3(13), 20.64(14), A
20-12(26), 19.65(27), 20.51(28)

5 39.31 33.95(7), 32.1(11), 32.59(12), 30.87(13),
10 76.3336.76(14), 36.09(26), 30.02(27), 34.73(28)
10 7-3370.75(10), 73.47(11), 74.33(12), 67.54(13),

69.3(14), 83.426), 64.32(27), 77.29(28)
15 86.57 85.5(26), 75.04(27), 85.48(28)
20 72.79 71.31(19), 68.423), 70.65(26), 4.67(27),

71. 18(28)
30 51.08 47.21(19)
40 39.61 32.28(19)
50 33.28 26.48(19), 25.6](23), 2 1.8)27)
75 23.37 14.29(27)

100 19.21 18.66(19), 16.51(20), 17.33(22), 17.1(23),
18.04(24), 9.29(27)

150 15.02 11.86(19), 13.21(20), 13.33(22), 14.83(24)
200 12.8 11.51(18), 9.81(09), 10.9(23), 12.68)24) ,.N

300 10.32 8.74(18), 7.82(19). 8.81)20), 10.19(24)
e + 3 8.42 12-57)56), 9.1](58), 8,56(64)

5 9.27 12.56(55), 10.8(57), 9.68(58), 8.73(64)

'The notation a Wb for experimental values of al means the measured value of a taken f romi Ref. b.
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TABLE V. The higher transport cross sections o'" (in units of ao) and comparison of a"' with the
experimental values.

E Experimental
(4) (3) (2) (1)Projectile (eV) a 4  

o o 0 1  momentum transfer, a'

e 3 18.19 19.41 15.89 16.56 16.72(26),' 14.65(27), 16.08(28) ,- -

5 30.45 38.97 25.98 34.67 32.45(26), 22.87(27), 29.5(28)
10 42.15 66.37 31.61 58.97 67.65(26), 53.6(27), 62.4(28)
15 40.84 58.57 28.41 49.56 51.2(26), 53.6(27), 51.28(28)
20 34.83 41.82 24.44 33.65 33.66(26), 23.58(27), 34.8(28)
30 26.18 26.52 19.40 21.33 13.22(27)
40 20.20 20.82 15.38 17.49
50 16.12 18.05 12.38 15.67 8.58(27)
75 9.98 13.40 7.60 11.90 6.79(27)

100 7.39 11.03 5.48 9.78 5.72(27)
150 5.24 7.96 3.74 6.95
200 4.26 6.08 2.99 5.22
250 3.63 4.86 2.53 4.09
300 3.16 4.01 2.19 3.31

e 3 6.87 9.02 5.89 9.71
5 7.87 9.39 6.80 9.44

10 9.67 10.40 8.01 8.95
15 8.85 9.33 7.15 7.64
20 8.63 8.92 6.79 7.01
30 7.51 7.62 5.78 5.79
40 6.73 6.73 5.10 5.00
50 6.04 5.98 4.55 4.38
75 5.38 5.19 3.95 3.63

100 4.62 4.40 3.36 2.30
150 3.64 3.40 2.60 2.22
200 3.01 2.77 2.12 1.74 •
250 2.56 2.33 1.77 1.43
300 2.22 2.00 1.52 1.20

'The notation a(b) for experimental values of o,1' means the measured value of a taken from Ref. b.

scattering of positrons by argon have been made only for collisional cross sections. Higher transport cross sections
a limited range of energies. The only available measured and the lowest seven phase shifts for positron-argon elas-
relative values of differential cross sections of Hyder tic scattering are given in Tables V and VI, respectively.
et al.3 at energies 100, 200, and 300 eV, have been nor- No comparison of these numbers is possible due to the
malized to the present calculated DCS curves at 90. In lack of measurements of these quantities.
this energy range, other calculations of elastic cross sec- Finally, an attempt was made to obtain the cross sec- S
tions are those of McEachran and Stauffer69 using the po- tions for the elastic scattering of ultralow ( < 2.5 eV) ener-
larized orbital method and ome limited results by gy electrons and positrons by argon. In this energy range,
Joachain 47 using the optical model potential. At higher no experimental numerical values of differential cross sec- ,.'

energies and at larger angles the pre,,-nt calculations of tions for electron impact are available. Thus it was not
DCS agree with those of McEachran and Stauffer and possible to obtain the low-energy parameters such as the
with the measurements of Hyder et al. When normalized scattering length and effective range for the positron-
separately at 90", the measurements of Hyder et al. at 300 argon system using the present procedure.
eV agree well both with the present calculation as well as In the present paper we have obtained various cross

with the calculations of Joachain.4 7 At low energies and sections-differential, integrated, momentum transfer,
near the forward scattering direction, where unfortunately etc-and the corresponding phase shifts for the elastic-,
no experimental information for positron-argon elastic scattering of positrons and electrons by argon. These Z%, P

scattering is available, our DCS curves differ significantly cross sections compare favorably with the recent measure-

from the calculated results of McEachran and Stauffer. It ments of elastic differential scattering of intermediate- S
would certainly be worthwhile to carry out experiments energy positrons by argon. With the anticipation ihat
on the elastic differential scattering of positrons by argon similar measurements will be inade for other rare-gas tar-
in this energy and angular range. For positron energies gets in the near future, wc arc presently calculating the
smaller than the positronium formation threshold in Ar cross sections for the elastic scattering of low- and
(8.96 eV), the integrated elastic cross sections are com- intermediate-energ positrons by fie, Nc, K., and Xc by a
pared in Table IV with the measured total positron-argon similar procedure.
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TABLE VI. Phase shifts (rad) of the first seven partial waves for elastic scattering of electrons and positrons by argon.

Projectile E (eV) 1=0 1=1 1=2 1=3 1=4 1=5 1=6

e- 3 -0.490 -0.132 0.130 0.0241 0.0106 0.0057 0.00346
-0.457 -0.134 0.142 0.021(26)'
-0.548 -0.140 0.125 0.035(27)
-0.493 -0.142 0.120 0.025(28)

5 -0.747 -0.272 0.306 0.042 0.0175 0.0094 0.0057
-0.685 -0.205 0.317 0.031(26)
-0.747 -0.256 0.254 0.102(27)
-0.733 -0.277 0.260 0.044(28)

10 -1.283 -0.688 0.751 0.084 0.0321 0.0172 0.0106
- 1.098 -0.528 0.936 0.093(26)
-1.243 -0.430 0.805 0.171(27)
-1.143 -0.562 0.840 0.10(28)

15 -1.569 -0.867 1.131 0.140 0.0497 0.0255 0.0156
-1.394 -0.750 1.451 0.154(26)
-1.365 -0.506 1.593 0.2(27) S
- 1.443 -0.782 1.39 0.165(28) ,

20 -1.826 -1.064 1.519 0.186 0.064 0.032 0.0194 ..
-1.653 -0.935 1.747 0.241(26)
- 1.818 -0.871 1.679 0.262(27)
-1.683 -0.962 1.670 0.232(28)

30 -2.154 -1.296 1.817 0.306 0.104 0.0496 0.0288
40 -2.40 -1.47 1.929 0.421 0.147 0.0682 0.0386
50 -2.583 -1.595 2.008 0.539 0.196 0.0909 0.0503
75 0.122 1.207 -1.184 0.645 0.250 0.116 0.0622
100 -0.146 1.014 -1.166 0.773 0.330 0.159 0.0858
150 -0.532 0.735 - 1.168 0.929 0.460 0.241 0.135
200 -0.809 0.535 -1.185 1.013 0.552 0.311 0.182
250 -1.027 0.38 -1.207 1.064 0.619 0.368 0.225
300 -1.205 0.253 -1.229 !.096 0.668 0.415 0.263

e+  3 -0.334 0.0839 0.0528 0.0219 0.0105 0.005 72 0.003 46 %
5 -0.496 -.0505 0.0703 0.0341 0.0169 0.00939 0.00572

10 -0.878 -0.139 0.0455 0.0456 0.0278 0.0167 0.0106
15 -1.06 -0.251 0.0173 0.0509 0.0368 0.0235 0.0152
20 -1.245 -0.384 -0.0427 0.0371 0.0378 0.027 0.0185
30 -1.455 -0.545 -0.126 0.0132 0.0385 0.0335 0.0248 A
40 1.529 -0.674 -0.206 -2.081 0.0306 0.0354 0.0291
50 1.423 -0.765 -0.267 -0.0506 0.0217 0.36 0.0326
75 1.115 -1.044 -0.487 -0.196 -0.0598 -0.0038 0.0154 I

100 0.967 -1.185 -0.606 -0.284 -0.115 -0.0344 0.00064
150 0.789 -1.365 -0.774 -0.420 -0.214 -0.986 -0.0374 A
200 0.690 - 1.474 -0.884 -0.519 -0.294 -0.158 -0.778
250 0.631 -1.543 -0.960 -0.593 -0.359 -0.209 -0.116
300 0.596 1.552 - 1.015 -0.651 -0.412 -0.254 -0.151

'Numbers in parentheses denote reference from which the measured phase shift was taken.
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APPENDIX A: GENERATION OF SPHERICAL iI(X)- -'/T/2x(x/2)' "2°F1(I+ 4;x
2/4)/F(/+ .

BESSEL FUNCTIONS (A l)

The standard recursion relations 76 can be used for the j,(x)=V Tr / 2x (x/2)01 /,F, (1 ; -x 2 /4)/F(I +
generation of the spherical Bessel functions nl(x) and

k1(x) for any value of the argument x and for increasing I (A2) -

%,v
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77The function OF, can be evaluated using the rational approximation. When the argument x of]j, is large (> 50), the ra-
tional approximation for OF, becomes unstable.

APPENDIX B: DERIVATION OF PHASE SHIFT FOR POLARIZATION POTENTIAL
IN BORN APPROXIMATION

For the polarization potential, Eq. (18), the Born phase-shift integral TB1, Eq. (5), is defined to be TpB, and is given by

7 0,i~t frj(kr)/(r +d',dr (BI)

After some simplifications, Eq. (B 1) can be written as

TpB, =ak 2  4f X xj (x) /(x +a2 )d -a 2 f x2 1(x)/(x +a2 d (1,32)

where a =kd. Using Eq. (6.535) of Ref. 78 and the recurrence relations for the spherical Bessel functions i1(x) and k1 (x)
one can derive

0 X 2j(X)(X 2+ 2)2dX = - [2aij + (aRk(a) -n/(2a)±+(21 + I )i(a)k(a)]/2(a), (133)

f0 X 2j2(X)/(X 2 +a 2 )3dX = - [2ail + IaWkj(a) - i/(2a) +(21 + I )i(a)k,(a)]/(8a3 )

+14i, + I(a)k (a) -irl/la 2 + iaWk, (a)/la [ 2± 4(l + _L)2-21 -1]

Substituting (B) and (B4) in (112) and after some simplification Eq. (20) is obtained.

APPENDIX C: DERIVATION OF PHASE SHIFT FOR STATIC POTENTIAL
IN BORN APPROXIMATION

Substituting V (r) [Eq. (17)], in Eq. (5) and making use of the standard integral78

fo' r exp- zrj2kr)dr =20 -1 Q[I+Z2 A20 ] (Cl1)

where Q, is the Legendre function of the second kind, Eq. (22) is obtained. The argument of the Q, function,
1 + z 2 /(2k 2 ), is greater than 1 and therefore the recurrence relation cannot be used for the generation of the functions for
increasing 1. One convenient way to evaluate a Q, function is to write it in terms of Gaussian hypergeometric function
F(a,b;c;x) as 76

where the hypergeometric function can be evaluated by summing the following series:

F(a,b;c;x)=1I+ ab X a(a+1)b(b+1) 2±+ a (a +1)(a +2)b (b+l1)(b +2) x± 3 . (C3)
cX1 c(c+l)xIx2 c(c+l)(c+2)x1x2x3

The higher-order derivatives of Q, with respect to z can be carried out easily using Eq. (C2) and the relation

-nF(a,b ;c ;x)= ~ nrb+ n F(a +n,b +n ;c +n ;x) .(C4)

dx" r(c +n)rnamrb)
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Positronium formation from Li and Na atoms by use of pseudopotentials
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The differential and total cross sections for the formation of positronium in its ground state from
Li and Na atoms by the impact of intermediate-energy positrons are calculated in the first Born and
distorted-wave Born approximations. Hellmann-type pseudopotentials are used to represent the
alkali-metal ion cores. The difference in the use of pseudopotentials and the static potential for the
core representation for evaluating various rearrangement cross sections is discussed.

I. INTRODUCfiUN rest and form positronium in the ground state by electron
capture from the target (T). Because of the single valence

There has been a growing interest in the investigation of electron it is reasonable to treat the alkali-metal atom as a
electron capture from alkali-metal atom. As an example, hydrogenic system by representing the ion core by a cen-
charge-transfer processes with Li have been suggested to tral potential, VY(r), which could either be a pseudopoten-
be occurring in plasma diagnostic probes.' Also, alkali- tial or a model potential. Then the initial and the final
metal atoms are many-electron systems that can be sim- channel interactions are
plified to be one-electron systems due to a single valence
electron. Theoretical calculations as well as experimental Ii(rpR)=Vp(rp)±Vp.(R)-e/rp±Vp(R) (Ia)
measurements have been carried out for ionization of and Vf(rT,R)= V.e(rT)+ VP-T(R)= Vp(rT)+ Vp(R), (lb)
electron capture from alkali-metal atoms by proton im-
pact (for some recent works see Refs. 1 and 2). The respectively. The position vectors are shown in Fig. 1.
charge-transfer 3 and the total collisional4 cross sections The notation used is similar to that of Ref. 7. The in-
for positron impact on alkali-metal atoms have been cal- teraction between the projectile and the valence electron is
culated by several authors, and the total collisional cross representel by Vp.e, that between the projectile and the
sections have been measured for a potassium target by target ion core is represented by VP-T, and that between
Stein et al.5 In the present paper, the first Born approxi- the target ion core and the electron is represented by VT.e.
mation (FBA) and the distorted-wave Born approximation In the present work Vp(r) is chosen to be of the Hellmann
(DWBA) are used to calculate the cross sections for the or Yukawa type:8

ground-state positronium (Ps) formation from lithium and e 2  e2A
sodium by the impact of intermediate-energy positrons. Vp(r)= - - + - exp(-cr)
Although the FBA cross sections are calculated and com- r r

pared both in the post and the prior forms, DWBA cross e2ad etaq
sections are calculated, for computational convenience, 2(r2 +d2 2  2(r2 +d2_ 3  (2)
only in the post form.

To compare the effects of different potentials (model The parameters A and ' for the valence electron in lithi-
potential versus pseudopotential) describing the ion cores, um and sodium atoms are listed in Ref. 8. ad and aq are
the first calculation6 is done to calculate the cross sections the dipole and the quadrupole polarizability, respectively,
for positronium formation from Li in the first Born ap- of the alkali-metal ion core. Both the valence electron
proximation by using the static potential for the lithium and the projectile positron experience the same interaction
ion core. The next calculations, employing FBA and with the atomic core except that the signs of the first two S
DWBA, are for the positronium formation in both lithi- terms of Vp change in the case of the positron interaction.
um and sodium using the pseudopotentials. In these cal-
culations the alkali-metal ion cores have been represented
by Hellmann-type pseudopotentials. A significant differ- ACTIVE ELECTRON

ence, in the values as well as in the shape, is observed for
differential cross sections (DCS) in FBA using the pseu-
dopotential and the static potential. A discussion about 4 7
the formulation of various potentials representing the ion
cores and the resulting differences in the shape of the
DCS is presented in Secs. II B and III. R

II. THEORY

A. Rearrangement cross sections P T

Let a positron of mass M. with lab impact energy E (POSITRON) R (ION CORE)

and velocity v collide with a target alkali-metal atom at FIG. 1. Coordinate system.

35 4533 (c)1987 The American Physical Society
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This assumption is believed to be plausible for the follow- [HD+( V, -Ui)]T + - E1P/, (9)
ing reasons. In the case of alkali-metal atoms the single where
valence electron is far removed from the alkali-metal ion where
core which contains the other tightly bound electrons and, l) =to +Ui + vie, t/( = - V -7

2  (10) V

therefore, the exchange effects in the valence- 2 vi ' 2Pl r

electron-ion-core interaction are expected to be small. and U is as yet an arbitrary distortion potential. The dis-
Furthermore, the exchange interaction is, in general, a torted wave V, then, is
short-range and much weaker interaction compared to the
static interaction. There are, of course, no exchange ef- #'t+ 1 - Uidi , il
fects in positron-ion-core interactions. Thus, it appears 'E-HD+iE

reasonable to assume that in the energy range being con- where and i satisfy
sidered here the valence electron and the incident positron
experience similar interactions, apart from the sign of HDjt+=E( and (H,+ Vre)tV, i=E i. (12)
some terms, with the alkali-metal ion core. Defining the
quantities Similar forms for the different wave functions

(%Pf,7X',Vy,, etc.) can be obtained for the final channel.
a--MT/(m +MT), /3=Mv/(m +Mp) (3) Let Oi(rl-) represent the internal state of (e + T) such that

where m is the electron mass and MT is the mass of the h2v2
alkali-metal ion core, the various position vectors of Fig. 1 2 T ,+ VI bi(rr)=ilb(r1). (13)
are related as I- I

RT=Rp_(l_3)rp ,A similar equation could be written for the final internal
state Of(rp) of Ps. The initial and final channel wave

rT=RRp+Orp , functions are then 0

R=RT+(l-a)rT , (4) Oi =exp(iki f.)6i(rj.), Vbf=exp(ikf.Rp)(6f(rp) , (14)

RP= RT+(1-a)rT , respectively. If Y/+ is chosen, following Ref. 7, to be of
r = -RT+art • the form

RT is the position vector of the positron relative to the Y = (15)

center of mass of the alkali-metal atom and Rp is that of then it follows from Eq. (I 1) that
the ion core relative to the center of mass of the final I
bound state, Ps. The reduced masses are gj+O, (rj)= E -H , +i i ' (16)

Pr=mMT/(m +Mr)=am Upon operating on both sides of Eq. (16) by (HI)-E), us-

Asp=mMP/(m +MP)=flm ing Eq. (13) and then taking the Fourier transform of the
resulting equation, it is seen that k j satisfiesVi = M p(M + M T)/(M + M T+ M P) , (5) + K h g -k il) ( v + . K - ,)

vf=MT(m +Mp)/(m +MT+Mp).
+(2)- 3/ 2 f g'lp)U,(K-p)dp=O. (17)

In the center-of-mass frame, the total energy of the sys-

tem is Here the tilde represents the Fourier transform. Similar-

(6) ly, for the final channel, if one writesE~~~~ =Vkf/ =v )b +i=¢k/(/)+ ,(6 f( r, )exp(i kf.Rp ) + gf (Rp ),(8

where fk 1 =viv is the initial relative momentum and Akf
is the final relative momentum, Ej is the internal energy of then an integral equation, similar to Eq. (17), can be ob-
the (e + T) system, and ef is the internal energy of the fi- tained for f f. The integral equations can be solved to
nal bound Ps state. The average momentum transfer vec- first order in the distortion potentials U, and U, to give
tors are U2v i Ui(K- ki )

K=)3kf-ki, J=aki-k f. (7) i7+KK)= k -k- -19)

If %P' is the exact wave function of the complete sys- and
tern in the initial channel with outgoing wave boundary 2

v Of(K - kf
conditions, then the Schr6dinger equation satisfied by Tit gt (K)= - - f 2 (2)is f 4i

f,2 The specific forms chosen for the distortion potentials are
Ai V V~r+ Vi + Vve 2=E' +  (8) the static potentials

2v1  R+ , % = P (U i(R I)= f Ei(r 1  2 V, r ,R )d r1  ,(

which, for the purpose of using the two-potential theory, Uf((R2) f [ jr r I2r ,R1d r,
can be rewritten as f
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Since U, depends only on RT and Uf depends only on tion is obtained for which
Rp, the T-matrix element for the transition from the ini-
tial state to the final state is given by 9  T = (iof I VfIV',) , (28a)

T -(X7 I Vf-- Uf I+) , (22a) in the post form, and

in the post form, and T = (Vf I V I 0i), (28b)

T = (0. I Vi- Ui 1 X + ) , (22b) in the prior form. The cross sections for positronium for-
mation in FBA have been calculated both in the post and

in the prior form. If the perturbations ( V - Ui) and the prior forms in order to check the accuracy of the trial
( Vf - Uf) are weak enough, kPj+ and k11 can be replaced wave functions for the valence electron of the alkali-metal

by X + and X-. This approximation is the distorted-wave atom. A better trial wave function, obtained by a lower-
Born approximation (DWBA) used here, and the T- ing of the energy in the variational principle, results in a
matrix element in this approximation is given by smaller post-prior discrepancy. The irtegrated cross sec-

tion for positronium formation
T -(Qf I Vf- Uf I X , (23a)

a21r Irdo sinOd6 (29)in the post form, and = o d sl

T = (Yj V - U XV) (23b) is evaluated numerically.

in the prior form. The present DWBA calculations for Atomic units are used in the present calculations. In
the positronium formation from alkali-metal atoms have these calculations the pseudopotential, Eq. (2), has been
been done in the post form only. The T-matrix element in reduced without losing much accuracy to S
the post form is V (r) = -- I/r + (A/r)exp( -gr) (30)

T = T I + T 2 + T 3  (24) for computational ease. The parameters A and 4 for the

where valence electron in lithium and sodium atoms are taken
from Ref. 8. It was found that even without the polariza-

T, = (bf Vf- UfI b) , tion terms for the ion cores in Vp(r) the use of Eq. (30) in
T2 = (Obf} Vf - UfIg9i+i) Eq. (13) gives the energy ci of the valence electron in the

alkali-metal atom very close to the observed values. The

+ (gi-Of I Vf - Uf I 0 ) = T+ + T- , (25) value of ej obtained in the present calculations is
-0.195 895 6 a.u. compared to -0. 198 1624 a.u.' ° for the

T 3 = (gfb I V- gi+ i) . 2s valence electron of Li and -0.182 596 a.u. compared

Note, on using Eqs. (19) and (20), that TI, T2, and T 3 are to -0.188 8644 a.u.10 for the 3s valence electron of Na.

first, second, and third order in the potential, respectively. The trial wave function for the s-state valence clectron is

Then keeping consistently terms up to third order in the expanded in terms of hydrogenic wave functions as

potential, the differential cross section is 3 2

q10(r)= Y0(?) j Ci+ 2 m- 2 r' - lexp(-6-8r) (31)

df DWBA- 41r2fk I T I2 where c, and 5, are variational parameters. Writing the

where distortion potential as

TI 2 T1  
2 +2[Re(T )Re(T2)+Im(Tl )Im(T 2 )] - Ui(R7')= f I Oj(rT) 2Vpe(rP )d3rT+ Vp(R1) , (32)

where it is assumed that a= 1 in the second term, the
(27) Fourier transform of the distortion potential can be writ-

When distortion is excluded, the first Born approxima- ten as

U ( ) 1A 3 3 3 d ' I %.
&j (K)=v ~ K+ ~ -1()Q.nA, 1

=1n=il= dx' x 2 -K 2

where

Qmno C2m _IC2n-ID2 + (C2m lC2n +C2n IC2m )D 3 +C2mC2nD4 ,

QmnI =C2m -C2n -D + 2
(C2m-IC2n+C2n-IC2m)D2 + 3c2mC2nD3 (33)

Qmn2=(C2m-lC2n+C2mC2n-I)DI+3C2mC2nD2 , Qmn3=C2mC2nDi , x=,+ , Di=i!/x' .
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The distortion potential in the final channel is the pseudopotential method as suggested by Hellmann,

U1s(Rp)== f 1kf(rP)1 2[Vp(R)+VP(rT)]d 3r 3 the Schr6dinger equation for the valence electron (in a.u.)

It vanishes when 3=-L as in the case of Ps formation. [-V 2 + Vp(r)]1(r)=ec(r)
Hence gf- also vanishes. The terms involved in calculat-

ing the cross sections in the post and prior forms of FBA where
and in the post form of the DWBA are given in the Ap- V(r) =- /r + (A /r)exp( - !'r) (35)
pendix.

is the effective potential for the valence electron. A and
B. Pseudopotentials for rearrangement processes are variational parameters, E is the binding energy of the

valence electron, and 6(r) is the wave function of the
Consider an N-electron open-shell atom with Z valence valence electron, not necessarily orthogonal to the wave

electrons. The general distinction between the valence and functions of the core electrons. Generally, M(r) is approx-
the core electrons is that the valence electrons determine imated by a trial wave function of the form
many of the physical and chemical properties of the atom
while the core electrons are relatively inert. Therefore, in 6(r)- Y RI(r)YI,(i) (36)
a moderate-energy collision process it is a fairly good ap- M' n.

proximation to assume that the valence (or the outer elec- where the radial part Rj(r) contains one or a few terms
trons) take part in the interactions while the core electrons (depending on the atomic state it is representing) of hy-
remain essentially inactive. However, for calculational drogenic functions with some adjustable parameters. The
purposes one needs to know the wave functions of the parameters A and of the pseudopotential and the adjust-
valence as well as the core electrons, that is, the total wave able parameters of the wave function R,1 are varied until
function of the atom which is antisymmetric with respect the lowest few eigenvalues, obtained using the Ritz varia-
to the interchange of any pair of electrons. In the tional principle, agree as well as possible with the ob-
Hartree-Fock approximation this wave function is an served energies of the ground and the first few excited
NXN determinant of one-electron wave functions which states. This procedure for determining the potential can
are orthogonal to each other. In order to avoid the com- fail since on increasing the number of terms in the expan-
plications associated with the orthogonalization of N sion for R,(r), the energy eigenvalues E of Eq. (35) con-
one-electron wave functions, one can utilize either a model tinue to decrease and eventually can become much lower
or a pseudopotential approach. In the pseudopotential than the experimental values.
procedure the problem of N electrons is simplified by The alternate way to determine the values of the pseu-
reducing it to a problem of Z electrons by introducing a dopotential parameters is to solve Eq. (35) by direct nu-
repulsive potential V(r) along with the ordinary Coulomb merical integration using the Numerov method. The radi-
and exchange potentials for the valence electrons. This al part of the bound state 0(r) behaves as
repulsive part represents the partially screened nucleus
and simulates the orthogonality condition or Pauli princi- R(,(r)-r) for r--.0,
ple by keeping the valence electrons out of the core. It R,1(r) - exp( - VT r)/r for r- , cc
may also contain implicitly the correlation between the
valence and the core electrons which is generally ex- where F =2( Vp -). Using the conditions of Eq. (37), the
pressed by the polarization potential. In its general form outward and the inward radial wave functions are gen-
the radial part of V(r) can be a Hellmann (or Yukawa) erated and matched at a suitable matching radius. The
type, a Gaussian type, or a combination of various short- first Kato cusp condition 5 can be used to start the out-
range potential terms. The difference between this choice ward function near the origin. The parameters A and .
of the potential for the core and the Hartree-Fock poten- are varied until both the wave function and its derivative
tial is that in the former case there are no energy eigen- become continuous at the matching point. For a fixed en-
values corresponding to the core electrons, and the ergy c of the valence electron a number of sets of parame-
valence-electron wave functions are nodeless for s elec- ter values may be obtained which will generate a smooth
trons, have one node for p electrons, etc. Hence the wave function for the ground state. Only that set of pa-
lowest Z eigenvalues correspond to the energies of the Z rameters is to be chosen which will reproduce as closely as
valence electrons. possible a few low-lying energy levels of the same symme-

The concept of the pseudopotential in atomic, molecu- try. In Ref. 8, from which the present values of .4 ind
lar, nuclear, and condensed-matter physics has been for the valence electron in Li and Na are taken, the pa-
known for quite a long time. Since the independent intro- rameters were chosen so that the lowest two energy levels
ductions of the pseudopotential, semiempirically by were reproduced exactly. It is to be noted that a wave
Hellmann,tI and on the basis of the statistical model of function which closely reproduces an energy eigenvalue S
the atom by Gombas,12 the method of pseudopotential may not necessarily generate expectation values of various
formulations has been developed by many investigators, '. powers of r which would agree with the previously known
and several review articles' 4 on this subject have been values 6 of these matrix elements. It is then possible that
written. We will concentrate on determining the pseudo- the transition matrix elements relevant to collisional pro-
potential parameters for atoms with a single valence cesses could be affected which, in turn, would affect the
electron-for example, the alkali-metal atoms. Following related cross sections.



35 POSITRONIUM FORMATION FROM Li AND Na ATOMS BY USE OF... 4537

To illustrate the use of different potentials, the cross i0'
sections for positronium formation from Li by the impact
of positrons have been calculated6 using the static poten- e++Ui2s) -- Ps(ls)+Li
tial of the Li+ core in the FBA. The static potential ex- 102 (with static potential)
perienced by the valence electron is obtained by averaging -0 ( s
the instantaneous interaction over the motion of the core
electrons:

1  2 0 100eV A)

I,, I Ij

S--+ - + dr 1dr, . (38) o0 4

1 r I r-r1I r-r 2 l 0 0e(B)

(r,r 2) is the antisymmetric Hartree-Fock wave function
of Li+ in terms of one-electron Slater-type orbitals given 9D

by Clementi and Roetti.' Since it is determined by the
exact interaction and the Hartree-Fock functions, the stat-
ic potential can be considered a model potential and not a 10
pseudopotential. Unlike a pseudopotential, a model po-
tential has bound states which may not correspond in en-
ergy to the observable states of the atom. Hence the l0'

lowest energy eigenvalue of the model Hamiltonian may 0 20 40 80 SO 100 20 140 10 180

not necessarily correspond to the energy of the valence Scattering Angle (dog)

electron. However, the wave function of the valence elec- FIG. 2. Differential cross sections for the positronium for-

tron has the correct number of nodes, namely, n -I-1. mation from Li at positron impact energies of 100 and 200 eV

The difference between the pseudopotential and the using FBA.

model-potential approaches has been discussed and ela-
borated on by Peach.18 A six-term trial wave function for
the 2s valence electron of the Li atom, similar to Eq. (31), tegrated cross sections using both the FBA and the
which corresponds to an energy value of -0.175 867 a.u. DWBA for the formation of positronium from Li and Na
for the valence electron (that is, the second lowest eigen- using pseudopotentials for the representation of the
value of the Hamiltonian) in the static potential V,(r) of alkali-metal ion cores are also calculated. These DCS
Li+, is used for the calculations of the cross sections for values for a Li target at positron impact energies of 100
positronium formation in FBA. The differential cross and 300 eV are shown in Fig. 3, and for a Na target at
sections are shown in Fig. 2, and the integrated cross sec- positron impact energies of 75, 200, and 300 eV are shown
tions are given in Table I. in Fig. 4. The corresponding integrated cross sections are

provided in Table I. In order to obtain the energy values

III. RESULTS AND DISCUSSION and the wave function parameters for the valence electron
of the alkali-metal atoms in Eq. (13), the variational prin-

The differential cross sections (DCS), using the FBA, ciple as well as direct numerical integration using the
for the formation of positronium at positron impact ener- Numerov method is used. The post-prior discrepancy for
gies of 100 and 200 eV from Li are shown in Fig. 2, and both the DCS and the integrated cross sections in the
the integrated cross sections are presented in Table I. In FBA is negligibly small in all cases. Hence only the post
these calculations, a static potential has been used to results in FBA are shown in Figs. 2-4. Some differences
represent the alkali-metal ion core. The DCS and the in- in the values of the cross sections, using the pseudopotm-

TABLE I. The integrated cross sections using FBA (UFlA) and DWBA (91)",A) for Ps(I s) forma-
tion from Li and Na by the impact of positrons. The notations p and s following the target atom corre-
spond to the use of pseudopotential and static potential, respectively. Numerical values of the form
a[b] mean a x 10'.

Target Positron impact rFBA (units of ao) (rOWBA (units of a0
atom energy (eV) Post Prior Post

Li(p) 100 8.4317[-2] 8.430[-2] 2.8105[- 1]
300 1.8319[-3] 1.8334[-3] 2.25465[- 31

Na(p) 75 3.5692 3.5676 1.3882[2]
200 1.7259[- 1] 1.7271[- 1] 3.7385
300 1.1783[ -2] 1.1775[- 2] 1.8342[- 11

Li(s) 50 6.3872[ - 2] 6.4361[ - 2]
100 1.9632[-2] 1.9704[ - 2]
200 2.5137[-3] 2.5023[-3] _ _
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idf ward direction with increasing impact energy, with the
pseudopotential these curves show a maximum, prominent

o++U(2s) - Ps(ls)+U +  at lower energies, near the forward direction. The total
positron-atom interaction potential has both an attractive I.0
and a repulsive part. In the calculation employing the
static potential, the contribution to the scattering ampli-

8lOeV (DWBA) tude arising from the repulsive part of the interaction al-". ........ most equals that from the attractive part for a certain an-
1."... "gle which results in a minimum in the DCS curve. This

................ 100eV (FBA) angle depends on thc positron impact energy. This
................. minimum in the DCS curve has also been obtained by10-. Guha and Saha3 (using FBA) and Mazumdar and Ghosh

(using FBA and the distorted-wave polarized orbital 1'
X method). Guha and Saha have used a core model poten-

* tial different from the one used here and their results %

(evaluated in the post form) for the positronium forma-
..... 300e Ation cross sections are much lower than the present re-

.... 300eV (FBA) suits. Mazumdar and Ghosh3 have used only the static •
.............. potential for the Li + ion core. Their calculated positroni-

10.g1 urn formation cross section at 50-eV impact energy, using
S 20 40 80 80 100 140 100 180 FBA, is comparable with the present result but their cross
Scattering Angle (dog) section at 100-eV impact energy is lower than the present

FIG. 3. Differential cross sections for the positronium for- one.
mation from Li at positron energies of 100 and 300 eV using In the present calculations it is noticed that the contri-
both the FBA and the DWBA. bution from the positron-ion-core interaction to the DCS

values dominates at larger angles in all cases. Also in the

tial and the static potential, are expected since the two po- present calculations, using the pseudopotential in DWBA,
tentials representing the Li + core do not correspond ex- it is seen that the distortion contributes significantly to
actly to the same energy eigenvalue for the 2s valence the positronium formation cross sections, especially for
electron. This difference is obvious in the values of Table the Na target. No measured values for the corresponding
1. Not only the values but also the shapes of the cfoss sectiois with Li and Na targets are available at this
differential-cross-section curves, as shown in Figs. 2 and moment, but such measurements may be feasible in the fu-
3, are different. While with the static potential the DCS ture-"9 Only when the experimental results become avail- ',

curves show a sharp minimum that moves toward the for- able in the future can a better justification for the use of
different potentials be made. In spite of the availability of
good wave functions containing the Slater-

10d type orbitals17 of alkali-metal atoms, the static potential -

(with3ps-udopotntial)+Na+ formed by these wave functions does not provide the ener-
gy of the valence electron to a very good approximation.

idY [See the energy values following Eqs. (30) and (38).]
75eV (DWBA) Furthermore, the form of these wave functions (having

many terms) makes them computationally inconvenient

" d for the evaluation of capture cross sections. In this S
0 respect the pseudopotentials are simpler to use, and the FR

...........75V IFBA) energy eigenvalues corresponding to these potentials can

.. ................ be made very close to the measured energy values of the

0 200eV (DWBA) alkali-metal atoms using adjustable parameters.
It is to be noted that, even though the model static po-

tential and the pseudopotential do not reproduce the
300eV (DWBA) alkali-metal spectrum to the same degree of accuracy, a

... .comparison between the positronium formation cross see-
200eV (FBA) tions using these two potentials is still worthwhile. In the

a 10 absence of any experimental information about cross sec-
tions for positronium formation in alkali-metal atoms, we .

I... can compare only with .:.c previous theoretical results for
10'4  these cross sections. The majority of these calculations 3

0 20 40 00 80 100 120 140 16O 18O exhibited features in the positronium formation cross sec-
Scattering Angle (dog) tions which were similar to the ones observed in Fig. 2 for

FIG. 4. Differential cross sections for the positronium for- the Ps formation in Li using the model static potential.
mation from Na at positron impact energies of 75, 200, and 300 We note that this potential did not reproduce the energies
eV using both the FBA and the DWBA. of the alkali-metal ground states very well. On the other
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hand, use of the pseudopotential, which reproduces the including these terms can only be determined when the
energies of the alkali-metal ground states quite well, in the experimentally measured values of the cross sections for
present calculations provides Ps formation cross sections positronium formation become available.
which differ markedly in shapes and magnitudes from the
previous calculations. ACKNOWLEDGMENTS
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the fact that the positron mass is much smaller than that knowledged.
of the alkali-metal ions (a = I). Several checks were made APPENDIX
to ensure the correctness of the present computer codes.

(a) Both the FBA and DWBA cross sections for the In this appendix we present analytical forms for various
process e+ + H(ls)I Ps(s)+H+ at a positron impact terms in the cross sections for positronium formation.
energy of 100 eV (Ref. 7) were reproduced. Note that Uf vanishes for the positronium formation.

(b The DCS values in FBA for the process Various parts of the post form T-matrix elements, Eq.
e' + H(ls)-,Ps(ls)+H + at a positron impact energy of (25), using DWBA can be written as
500 eV (Ref. 20) were reproduced.

(c) The DCS values in FBA for the process T,=N 1 +N 2  (Al)

H+ + H(Is)-H(Is)+H + at a proton impact energy of where
700 keV (Ref. 20) were reproduced.

(d) The DCS values in FBA for the process N, = -(21r) 2f (K-t)P(t)ji ( - t - J d ' t  (A2)

H + + H(Is)-,H(Is)+H+ at a proton impact energy of N, =(270-3/ 2  (K) f Vp(t)i(-t.-J)d 3t (A3)
198.344 keV (Ref. 21) were reproduced.

(e) An attempt to reproduce the DCS values in FBA for T + =L I+L 2 , (A4) .P
the process e+ + Li(2s)--Ps(ls)+Li + , as reported by
Guha and co-workers, did not meet with success. A where
small computer program which specifically made use of L l = - f bf(--t-q+Skf)P(t)j/(q)
the wave function and potential of Guha et al. was writ-
ten. This program reproduced the same values of the dif- Xdi -t-aq+kf)d3 t d'q , (A5)
ferential cross section as given by our general program. L ft

Finally, we comment on two aspects of the present cal- f +
culations for positronium formation from alkali-metal X (- t -q + kf )d 3 t d 3q (A6)
atoms. First, the shapes of the differential cross sections
for positronium formation depend on the type of interac- In evaluating LI, is it assumed that a= I. T2 and T,
tion potential used in the calculations. This is obvious on vanish because of the vanishing of gf-. In the prior form
comparing Figs. 2 and 3. It is not yet possiE-i' to ascertain of FBA, the T-matrix element (Eq. 28) is given by
the correctness of either shape due to the absence of corre- T =Nj +N3 (A7)
sponding experimental cross sections. The second remark
concerns the significant difference in the values of the where N, is same as in Eq. (A2) and
cross sections, both differential and integrated, obtained N 3= (2fr)31 2[K2,/(2pp)-f] (K) i(-J). (A 8)
by using the FBA and the DWBA. A rather large differ- P-J

ence between the two values seems to suggest that the In the post form of FBA, the T-matrix element of Eq. 0
higher-order distortion terms in the DWBA may contri- (28) is essentially T, of Eq. (Al). The integrals involved
bute significantly to the cross sections. The importance of in evaluating these terms are of the form

I,= 1 1 (A 9) "-::.-

(p- A) 2+a 2 (p-B)2 +b 2 p 2 +z 2

l f I (A10)I) f ~p[(p+ A)+a 2]2 p2+z 2 , ,

_ _ _ _ _ _ _ (AI)

(p-A)+a 2 (p-B)+b 2 p 2 -v 2 -i/ [(p+q-D)2+d 2] 2 q2+z 2  A

f3 = 1 1 1 1I
(p+q- A) 2+a 2 (p+q-B)2 +b 2 p 2 +c 2 (q-D)2+d 2 q 2 -t' 2-ilr

Ilp is integrated analytically and is given by are reduced as follows:

1 " 1I (Ai13) 1, =r'2 f'dx
l=a A 2+(a +Z)2 E[F2 +(E+z )2]

Using a Feynman identity, as in Ref. 7, the other integrals where-

a A 2 +(a€z) 2  (A13

". -%V
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E 2 =x (1 -x)(A-B) 2 +xa 2 +(1 -x)b 2 , where

F=(A-B)x +B, (A14) E 2=x(l- x)(A-B)2 +xa 2 +(1 -x)b 2 .

12 I a x yy I S iV
d Jf o O d T + S 2 T 2J' F=x(A-B)+B,

where 
(A 16)

E 2 =x( 1-x)(A-D)+xa 2+( 1 -x)(d +z) 2

F=(A-D)x +D, T=yF+(I -y)D.

s 2 =y(I -y)(F-B) 2+yE 2+( 1 -y)b 2 , (AIS) Now the integrals are evaluated numerically. The one-

T -2ivs y F 1 2dimensional integrals have been integrated using
Tsy(E 2 +F 2 +(I-y)(b2+B)' Simpson's rule, and the two-dimensional integrals are

1 3 =1T f 0
t dx f 1dy evaluated using a 9-point square formula 22 with an error

JOd dEs[T+(s _i) 2 ] proportional to the sixth power of the stepsize.
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Simple model for the resonant vibrational excitation of molecules
and its application to Li2 and N2  4p%
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A simple model for the resonant vibrational excitation of a molecule by electron impact is pro-
posed in which the potential curves of the electronic states of the molecule and its resonant anion are
replaced by those of linear harmonic oscillators of arbitrary frequencies and equilibrium internuclear
separations. A closed-form expression for the excitation amplitude is derived. Useful recursion rela-
tions among amplitudes are obtained which allow convenient evaluation of cross sections for any in-
elastic or superelastic vibrational transition. The model is used to generate the cross sections for vi-
brational excitation of Li2 and N2 by the impact of low-energy eltctrons.

I. INTRODUCTION erate the experimentally observed 5 peaks in the cross sec-
tions for nitrogen and predicts the excitation cross sec-

It has been well established that the phenomenon of vi- tions for lithium dimers.
brational excitation of a molecule by electron impact is
dominated by resonance formation.' The direct (or non- II. VIBRATIONAL EXCITATION AMPLITUDE
resonant) contribution, which is quite important for the
elastic scattering of electrons by a molecule, to the vibra- In the process of vibrational excitation, a molecule AB,
tional c citation is usually small. For example, the spec- initially in the vibrational level m, undergoes a transition

tacular peaks in the cross sections for vibrational excita- under the impact of an electron of energy E=hk, ,/2m,, A%
tion of molecular nitrogen can be satisfactorily reproduced to the final vibrational level n, leaving behind an electron

only by using a proper resonance model. 2 The purpose of with energy E f=*k2/2m,. This process,
this paper is to present a closed-form expression for the e(ki)+ AB(m--.AB----e(kf )+ AB(n) , 0
resonant contribution to the amplitude for vibrational ex-
citation of a molecule by electron impact using a simple proceeds via the formation of an intermediate resonant
model. Furthermore, some useful recursion relations state AB-, whose nuclear wave function (R), in the
among the excitation amplitudes will be obtained which local-width approximation, satisfies' (in atomic units),
will permit a rapid evaluation of the resonant contribution
to the cross sections for any inelastic or superelastic vibra- [Tv + V- +A(R)-ir(R)/2 -E](R)

tional transition in a molecule. = -[F/(2ir)]"-Vm(, R . (1)
In the model that we are proposing here, the potential

curves of the electronic state of the molecule and of the Here, V-(R) is the real part of the potential curve of the
resonant anion state are replaced by those of two simple anion state AB -. A(R) and F(R) are, respectively, the
harmonic oscillators of arbitrary frequencies, curvatures, level shift and the resonance width. Tv% is the nuclear ki-

and equilibrium internuclear separations. Moreover, the netic energy, and X,,(R) is the nuclear wave function of
two oscillators have arbitrary energy separation. A simi- the initial rotationless vibrational level of AB. E is the to- •

lar (but not identical) model has been used in the past by tal energy of the system, that is, E = E + E,,, E,,, being the
other investigators 3' 4 for vibrational excitation of a mole- initial vibrational energy of the target molecule. If V, R)
cule by an electron. In these previous investigations the is the wave function of the final vibrational level of the ..

two linear harmonic oscillators were taken to have the molecule, the amplitude for vibrational excitation via reso-

same frequency. Also, a simple recursion relation among nance formation is'
excitation amplitudes was obtained previously 4 and was A (m-n; )=B(n 1 [F(R)/(21r)" 2 '(RI )2
valid only for the inelastic transitions. The results in the - '
present paper represent a generalization of the previous where B = -4w r2 /(kkf) 1/ 2. For brevity, we are using the
results and indeed reduce to those previous results for the bra and ket notation to denote the various vibrational
case of equal frequency oscillators, wave functions of the molecule, namely, V, I = ( R r m %

Finally, the results of the present paper are used to ob- and X,(R)= (R n). Using Eq. (1) and introducing a
tain the cross sections for vibrational excitation of Li 2 and complete set of vibrational wave functions (( R : v)) of the
N2 by electron impact. The model can successfully gen- anion state, the transition amplitude can be written as

I

A (m---n ;E)= -B I (n I [F(R)/27r] /2[E,,+A(R)-iF(R)/2-E] '1 v )(( [ [F(R)/2nr]'/! r ) , (3)
V
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where the sum over v includes integration over the contin-
uum nuclear functions of the resonant anion electronic A-

state. Ev is the energy of the vth vibrational level of the
anion. In what follows, wc will consistently use the dou-
blet ket notation (such as 10)) to denote the vibrational AB

wave functions of the resonant state and a single ket nota-
tion (such as I m ) or I n )) to denote the vibrational wave

functions of the neutral target state. Now, if the width r
and the level shift A, which in general are energy depen-
dent, are taken to be independent of the internuclear sepa-
ration R and energy e, then Eq. (3) can be written as

A (m --, n;e)=- 21 r' , (n Iv))((v m)
Ti -f, VE -E..±ir/2-A

Note that (n 1v) and ((vim) are essentially the
Franck-Condon overlap integrals between the vibrational
levels of the initial electronic state of the target and those Internuclear separation
of the resonant anion state. FIG. 1. Schematic representation of the potential energy

Now we introduce a simple model in which the poten- curves of the molecule AB and its resonant anion AB - by linear
tial curves of the initial electronic state of the target and harmonic oscillators.
the resonant anion state are taken to be those of simple
linear harmonic oscillators of frequencies o and o, re-
spectively. r is the separation between the equilibrium in- tegrals appearing in Eq. (b) can be writte n ; a closed •

ternuclear positions of the two oscillators. Figure 1 shows form as a finite sum.6 Evaluation ofia (m --n ;) will then
the two potential curves and their relative geometry. The involve two finite sums and an infinite sum. As we will
overlap integrals, along with useful recursion relations, be- show now, a (in lins) can be alternatively obtained, us-
tween vibrational levels of two off-center linear harmonic ing the recursion relations which will be derived below,
oscillators of different frequencies have been worked out from the mere knowledge of a(0- 0;e) and a(0-*l;e).
in detail. ~ For the case of linear oscillators, Eq. (4) for the Furthermore, a (0--O;E) and a (0-. 1;) can each be writ-
vibrational transition amplitude becomes ten as simple one-dimensional integrals which can be eval-

o tuated rapidly on a computer for any electron impact ener-

A4 (m--nE)= 2- 
1

/
2 a (m--+n;c) (5a) gY E. To begin with, we define a few convenient relations:

fkikf _____-

where ca 2=o/[odco_-o 2 )]
fl 2=w02co_/[0wo(c 2 _ 2 )] , (6) 0

S((v(5b where ju is the reduced mass of the nuclei in the molecule
AB. Now the Franck-Condon overlap integral (m 1v),L

and Q =[E-8E +mw+(o-w_)/2-A+i/2]/w_. using the two-center harmonic oscillator wave functions, ,,

SE is defined in Fig. 1. Either one of the two overlap in- is6

(m 1 v)) = N (2m  + m !v)- '12 V, 1r -k)/2(_ .Y)(,m -k)2( 1- Y 12)k/2k H , _k(at)H v_k( - l)2k  (7)

where

N= 2(ow_)'12 j exp -oWo
2oo( + co-),

Hm are the Hermite polynomials and [m,v] denotes the smaller of the two integers m and v. Substituting Eq. (7) into
Eq. (5) and interchanging the order of the sums, one obtains

a (m-.n ;E)=N 2(2m +"m !n -1/2 ? k, r-k/2( --y)fl -)/2(1 y 2 )k/2k 2kH,, - k(a)
k=O I

x ,( , j/ .I2(_y)(fl l)2(I 7
2 )''l!2'H, (a)

1=0

1, 1k, I v I I. " Q v)I ,,k 1)H . fl ()
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where k,! denotes the larger of the two integers k and 1. Using Eq (A4), a (m -- n ; E) can be written as

a(m-..n;E)=N2(2m+nm nDI/ 2  M 1y,-k/
2( -,)(m -k)/2( 1 -- r2)k/ 2H. -k(t)

k nA 
o (x y ) ,= Y - / 2 (

,-
)( "

-l)/2(1-y 
2

)1
/ 2H - i(a) a fy

XI o H= -I (a)-

where(9)

Aoo(x,y)= I YVH(X)H(y) (10)
v=o 2vv!(Q -v)

On using the integral representation,

f0 exp[i (Q -v)t]dt = Q ImQ>0 (11)

and the bilinear generating function for the Hermite polynomials, Eq. (A3), Aoo(x,y) can be rewritten as

dtz'Q+1 [2(X22XyZ/y-Y2) (12)

Aoo(x,y)= -if (Z2 f2 1 2 exp 2 2 2
0 (Z- Y )1/ Y-_z

Here, for convenience, we have introduced z =exp(it). Now the derivatives in Eq. (9) can be carried out explicitly and

using Eqs. (12) and (A2), we find 0

I Aoo(x,y)= -i xp2
2ya _x X =_ f-( )/ '

(k,f] Ik 11 1 2yz 1" II y k 1 2X 1 2 P2/2 /2

XHk-p -- PB2  / JH- _- t2  I1 (13)
z1+'y z +y'

Substituting from Eq. (13) into Eq. (9) and interchanging the sums again, one obtains

a(m--*n;E)=-- iN
2(2m+mln!)- l/ 2P dtzQ_ _ [I220y2 1P_

k I Hk p 2_ 2)1/2"-=PIM I I 1 (Z Z+
[ ]_P - /2 [1/2 111/21

S i I' I (_y)(n -I)/2 Y2 ] I 1 (a) (z_
2 y

2
)1/

2 1H 1  j I , Z - }Y (14)

I=PI (Z_' +

Finally, using Eq. (AS) twice to carry out the k and I sums and then applying Eq. (A6), the final result is obtained:

A2(m--rn;E)= In ._ f I P 2

2Xai 2'fnn 2,0/ px -p!2- 1

-iBN 2 [m~n {m 21 2~ (Z +- 1( -Y 1/2
2 )/

xH" +n-2p a 2 (z-l )(z - ' )  (15)(z + l)(z +y)

Equation (15) reduces to a single term for the case in which either m or n is zero. For example, the two important spe-

cial cases, A (0-0; ) and A (0-*l; ), are

A (0--0;c)= -- iBN 2 r f dtzQ+' 2 2y (16)
2w. 1T 0o (Z2 - Y2)1/2 exp z ± '(
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A(O-1;e)= -iBN 2 fo r dtzQ+' exp 2, 2y z- 1 -/ 2)- 2 (17)
2o,.ir Jo (z-y)' z + Y Z +Y 2&)o

For the case in which both m and n are equal to one, we obtain

-iBN 2F dtz Q + I  zl--22y 1 [ y2) 2 W(Z.1) 2

A (I -2)1/2 exp z 2_ +' z - +Zo(Z (18)

From these amplitudes [Eqs. (16) through (18)], and from the recursion relations to be derived below, the entire matrix
for vibrational excitation amplitudes can be obtained (see Sec. III).

For the case in which the oscillator frequencies of both the neutral state and the resonant state are the same (that is,
wo=_), the integral in Eq. (15) can be carried out. The resulting expression for the vibrational amplitude in this case
becomes

A-n;,.BN2r im~n) [m 1 [n 1 I 2p)/ 2 F(p -Q)r(m +n -2p +1)= 1 1 p p 2 oo(m +n -p-Q +1)

X4)(p -Q,m +n -Q -p + l;co/(2o0)) . (19)

Here, 4) is the confluent hypergeometric function. This expression was obtained earlier for the case m =0 and n arbi-
trary by Golubkov et al.,3 and in the alternative form of continued fractions for the case m = n =0 by Domcke and
Cederbaum.

7

III. RECURSION RELATIONS

For the special case in which the frequencies of the two oscillators are eual (co =o_ a three-term recursion relation
among the vibrational amplitudes was derived by Domcke and Cederbaum. More general recursion relations among the
amplitudes, for the case in which the oscillator frequencies are not the same (cow _), are obtained below. The recursion
relation of Domcke and Cederbaum is a special case of these general recursion relations.

The vibrational amplitude can be written as a sum of Franck-Condon overlap integrals as in Eq. (4) if the width and
the level shift are taken to be independent of R. Recursion relations among these Franck-Condon integrals have been
obtained previously 6,8 and can be written as

(n + 1)1/ 2(W+W_ )(n + I I v+1 )) -2[ww(v+ 1)]11 2 (n 1)

+n 12(W _-o)(n - Iv+ 1 )) -o_(2w/oo)'l 2 (n Iv+ )) =0 , (20)2 w I 2 wco
11/2 + /2[2(v+l)lJ/2 (n I v~l)) [2 (o+to_)(n -I1 Iv)- 2too (to-to_(n +l Iv>)

Wo_
-- oj ( Ivy) . (21)

Using Eq. (21), the terms containing I v+ 1)) in Eq. (20) can be eliminated, resulting in a five-term recursion relation in
which the index v stays constant. Thus,

[2n (co2 +o2 )-4too(v+ 1)+(O+wo_)2 + 2co2/coo]( n Iv))

-2o2 (2tooo)1/2[ (n + 1)1/ 2(n + I I v)) +n /2(n -1 I v)]

(6 2-_2) + [(n+l)(n +2)j/2(n +2 v)) +[n (n - )]1/2(n -2 =0 . (22)

Equation (22) can be used to obtain recursion relations for the vibrational excitation amplitudes. Multiply Eq. (22) by
(m 1 v)/(Q -v) and sum over v to get

(m Iv))(n Iv)) 2n (+ 22+W2-+ 4t-(Q - v)-4oo_-(Q +1)+w+o_ c2+ - (oQ-

~2,w2.j1)- 1(n +1)1/2 j (m 1v) ((vIn +) m/0 ( v I n -I
vQ

n
'  - n

-(&o2- o ) [ (n F -l)(n +2) ] 1/2 0 (m 1v))((vI n +2 [n ]'Q (2n ) +)(( - 2) _ -.. , (23)

=0 v- ,0
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where 4twQ has been added and subtracted in the numerator of the first term. This first term can be rewritten as

[02 2 2oA l
(m Iv) ((vlni ) (o 2 +o w )+4oo)(Q-v)-4o-(Q+l)+(W+o)-) 2 + / (Q -v)

= 2-  <~~~~~m Iv))(<vl,,n ) _ mI><vn

=12n(2+2)4w&)(Q +)+(+(O)2+ + v-o Q-v v 0 ) (coo IV=O Q-V V=O

(24)

Using the completeness relation on the second term in Eq. (24) and using Eq. (5) we obtain the following recursion rela-
tion:

2n W 2 +a) 2 )-4co (Q + 1)+Ga+C)2+ 2 a (m--+n ;E)+4wo_m,n
O1

-2o2 (2t.o/to0)i 2[(n + l)/ 2 a (m-->n + 1;)+n 1/2a (m--n - 1;e)]--2(o)2--to 2)[(n +lI)(n + 2)1112a (m->n + 2; r:) +[n (n _-1)11/2 a(m -- n -2;01} =0 . (25) --

Note that in this five-term recursion relation among vibrational excitation amplitudes, the initial vibrational level m
and the incident electron energy E is fixed in each term. This, of course, implies that the total energy E = E + Em is the
same in each term as it should be. It is possible to obtain an alternative recursion relation among the amplitudes in
which the final vibrational level n is fixed in each term. Such a relationship can be obtained by replacing n by m in Eq.
(22), multiplying the resulting equation by (n I v)) /(Q - v), and summing over v. Additional care must be taken in this
case because the factor Q in the denominator contains m. The resulting recursion relation is

2m (O+t 2a )-4o_(Q + 1)+(O+o_ )2+ - a (m -- n;)+4w)_8,,
(0

-2t2/ o)" 2 [(m + 1 )l 2a (m + l--n ;e-w)+m i/2a (m - l-n ;e+o))]

-(W 2-)_)( [(m +l)(m +2)]1 2a(m +2--n;E-2o)+[m(m -1)]1 1 2a(m -2---n;E+2W)J =0 . (26)

Note that the initial vibrational level m is different in IV. DISCUSSION
various terms but the final level n is fixed. Furthermore,
the incident electron energy is different, although the total In the preceding sections we have obtained a summa-
energy E is the same in each term of the recursion rela- tion expression, Eq. (5), and an integral expression, Eq.
tion. (15), fcr the amplitude for resonant vibrational excitation

The principle of detailed balancing relates the ampli- of a molecule. Useful five-term recursion relations among
tude of the m-to-n transition to the amplitude of the n-to- these amplitudes are obtained in Eqs. (25) and (26) which,
m transition, albeit at different incident electron energy from a mere knowledge of amplitudes for transitions to
(but at the same total energy), as only three low-lying levels, would permit a rapid evalua-

A (m--n ;E)= A(n---m ;F+(m -)w) . (27) tion of vibrational excitation cross sections for any transi-
tion, inelastic or superelastic, for any molecule.

It is easy to see that Eq. (27) also follows from Eq. (5) al- The summation expression of Eq. (5) proved to be more
most by inspection, useful than the integral expressions of Eqs. (16) and (17)

From the mere knowledge of the two vibrational ampli- when used for evaluation of the amplitudes. This is be-
tudes, A (0-*0;E) and A (0- 1;E) at all energies, and us- cause the integrands in Eqs. (16) and (17) for A (0-*0;e)
ing the recursion relation of Eq. (25), the entire first row and A (0-l;) are rapidly oscillating and require a
(m =0) of the vibrational amplitude matrix can be ob- prohibitive number of evaluations in order to obtain 0
tained. Equation (27) can then be applied to obtain the sufficient accuracy to be used with the recursion relations.
first column (n =0). With the additional knowledge of The summation expression, Eq. (5), on the other hand,
A (I - 1;E), the next row (or column) can be obtained us- achieves similar accuracy after typically including only 25
ing Eq. (25) [or Eq. (26)]. Here, it should be noted that terms in the sum, and is to be preferred numerically. Al-
there are two alternative methods for completing the am- though the integral expression may not appear useful nu-
plitude matrix. First, the rows and columns of the entire merically, it can be seen from Eq. (9) that if Aoo(x,y) 9
matrix can be obtained by successive use of the recursion could be evaluated analytically, then all of the higher-
relations of Eqs. (25) and (26). Second, using the princi- order transition amplitudes can be determined exactly by
ple of detailed balancing, Eq. (27), each column (or row) merely taking derivatives of A00 . The recursion relations,
can be obtained from its corresponding row (or column). Eqs. (25) and (26), can be used for generating the ampli-
Thus only half of the matrix needs to be built up via the tudcs for excitation of higher vibrational levels if
recursion relations. a (0--0;E), a (0-- l;e), and a (I -Jl;E) are known either
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from the summation expression, Eq. (5), or from the in-
tegral expression, Eq. (15). These recursion relations be-
come especially useful for the integral expressions because 0.05 - -× 1/6

the real and imaginary parts of the integrals representing i2
the lowest-order transition amplitudes (O-+0, 0-,, and
1---1) are easily separable. Furthermore, use of complex
algebra and evaluation of Hermite polynomials can be J
avoided in obtaining the higher-order transition ampli- X - 1/2

tudes. It should be noted that use of the recursion rela- --

tions [Eq. (26), in particular] requires that the step size in 0 0
electron-impact energy should be some proper fraction of cr,
the oscillator excitation energy fA. o

For the case when the frequencies of the two oscillators a02
C

representing the potential curves of the molecule and its .o
anion are equal, the recursion relation, Eq. (25), reduces 0.02 03

to a three-term relation and is identical to the one ob-
tained by Domcke et al.4 This three-term recursion rela- 0
tion among amplitudes is essentially equivalent to a recur- 0o0

sion relation among confluent hypergeometric functions9

since for the case of equal-frequency oscillators the excita-
tion amplitude is related to a confluent hypergeometric
function as seen in Eq. (19). As far as we know, the 0.00
second recursion relation, Eq. (26), that we have obtained, 01 0.2 0.3 C4 C5

in which the final vibrational level is fixed, has not been Eiecton Energy (e'v)
obtained earlier in the literature for either equal or un- FIG. 2. Cross sections for the resonant vibrational excitation
equal frequency oscillators. In obtaining Eq. (4) for the of Li2 by the impact of low-energy electrons.
excitation amplitude it was assumed that the width of the
resonance is independent of the internuclear separation.
This assumption led to the Franck-Condon overlap in-
tegrals in Eq. (4) and to the recursion relations in Eqs.
(25) and (26) which are merely extensions of the recursion
relations among the Franck-Condon integrals. If, howev-
er, the width r" depends on the internuclear separation, 1.5

more general recursion relations among excitation ampli- 12

tudes can still be obtained by using the recursion relations
among two-center harmonic-oscillator matrix elements. 6  

0.9

In order to illustrate the utility of the recursion rela- 0.6

tions derived above, we have numerically evaluated the vi-
brational excitation amplitudes for Liz and N 2 using Eqs. 03
(5), (7), and (25). The vibrational excitation cross sections 0 L
obtained from these amplitudes are displayed in Figs. 2 J 06
and 3, respectively. The parameters for the potential 03. 03 •
curves of the ground and the resonant anion states for the
two molecules' - 2 used in these calculations are listed in 0.0
Table I. Note that the width of the resonance r is taken 0.5

to be energy independent. The level shift A is taken to be 0o,.
zero. It is easy to verify that the first five vibrational lev- L o 0o

els of the above simple harmonic oscillators have the same ( 04

energy levels, within 5%, as the actual vibrational energy Li 0 0.
levels of the ground electronic states of the molecules. .-

This indicates that the harmonic-oscillator approximation 04

is reasonable for these levels. The parameters w, o-, r,
and 6E of the lithium system are taken from the recent ab 04

initic calculations' 2 of the structure of the ground and ex-
cited states of Li2 and Li2 - using the optimized ... .
configuration-interaction (CI) wave functions. Following 2 : 3 )5

Wiper's threshold law, the width F(R) of the resonant ectr(- Ferg), (e,)

state is taken to be of the form F(R)=ck (R), where k (R) FIG. 3. Cross sections for the resonant vibrational excitation
is the wave number of the electron autodetaching at inter- of N2 by the impact of low-energy electrons. Solid circles
nuclear separation R. The constant c is determined' 2 by, represent the experimental values of the respective cross sections
first, smoothly extrapolating the fully optimized orbital from Ref. 5.
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TABLE I. Potential curve parameters in atomic units. The sight, the assumption of constant r may appear quite
numbers in square brackets represent powers of ten, drastic since in the case of N2 it has been well estab-

Parameter Li2  N2  lished, 1 using the boomerang model, that features of the
excitation cross sections are best obtained when the reso-

(0 1.5983[-3] 1.073[-2] nance width is taken as a decreasing function of the inter- 0
to_ 1.0519[-3] 8.82[-3] nuclear separation. Then, a strong interference between

r 8.0623(-1 1.638[-1] the single incident and a single reflected nuclear wave
Y 6.426[ + 3] 1.2852[ + 4] packet leads to peaks in the vibrational excitation cross
&E 9.4979[-3] 7.38699[-2] sections of N2 which shift to larger energies for excitation
r 2.273[-31 6.5[-3] to higher levels. However, since the present model is ex-

pected to be accurate only for low-lying vibrational levels,
the convenient (but not necessary) assumption of constant

exponents of the CI wave functions from the variationally 17 is reasonable. Furthermore, since all of the results are
stable region into the autodetaching region. This pro- analytic, it is hoped that the present model with recursion
stalereios eitso f the tahig regontis ro-n relations could be useful for calculations of excitation
cedure yields estimates of the matrix elements coupling cross sections in polyatomic molecules for which ab initio
the discrete resonant state and the continuum states cluain r eaieytdoswhich, in turn, are related to the resonance width via calculations are relatively tedious.
Feris gon rnarlate d the resnacula tio v) Finally, we comment on the applicability of the presentFermi's golden rule. In the present calculations, F(R0), model for obtaining resonant contributions to the vibra-
where R0 is the equilibrium internuclear separation of Li2, model foctain o a c ntation o the
is taken as the constant width of the resonant state of tional excitation of a molecule. The starting point of the
Li2-. The values of the parameters w, w , and SE for the present model is the local equation, Eq. (1), which implies
molecular nitrogen system are taken from the ab initio that the model is valid for energies not too close to the
calculations as listed in Ref. 11. The parameters r and I threshold. Use of a harmonic oscillator to represent the
were adjusted by starting from the initial values of Golub- potential curves implies that the present model would 0

al.,3 such that the calculated vibrational excitation work best for obtaining cross sections for vibrational tran-
kov et a scthttecluaevirtoaexiton sitions among low-lying levels only. For transitions tocross sections agreed as best with the experimental values hi tion l levels ere thanationici-
as possible. higher vibrational levels where the effects of anharmonici-

Figure 2 shows the cross sections for vibrational excita- ty become important, a similar useful model using Morse

tion of Li2 by the impact of low-energy electrons. Molec- oscillators could possibly be developed.

ular lithium is isovalent with molecular hydrogen and is A
known to exhibit characteristics similar to those of molec- ACKNOWLEDGMENT
ular hydrogen in regard to the process of dissociative at- The support of the U.S. Air Force Office of Scientific
tachment, which is another resonant process. 3 The Research through Grant No. AFOSR-84-0143 is grateful-
lowest resonant state of Li2 - is the A 2 .+ state. In the ly acknowledged.
case of molecular hydrogen it is known 14 that the contri-
bution of the 2 + resonant state to the vibrational excita- APPENDIX 0
tion cross sections shows a structureless peak for any in-
elastic transition. It is thus not surprising, based on the Some of the useful properties of Hermite polynomials

similarities between Li2 and H2, that the inelastic excita- that have been used in various derivations are collected

tion cross sections for Li2 as shown in Fig. 2 are also al- here.9 From the linear generating function of Hermite po-

most structureless. All of the cross sections show only lynomials,
one peak, and the location of the peak is roughly the same Go

for all transitions. Also, there is the possible development I H,(x)t"/n!=exp( -t 2 +2x (A1)
of a second peak in the higher-order transitions n

[A (0--+4;E) and A (0---5;E)]. Figure 3 shows the cross the following representation for Hermite polynomials is
sections for the vibrational excitation of molecular nitro- obtained:
gen by the impact of low-energy electrons dominated by H,(B/A)= A-"(a/at)n=oexp(- A 2t 2+2Bt). (A2)
the 2I1 resonance of N2-. Because of the boomerang na-
ture of this resonance, the vibrational excitation cross sec- The bilinear generating function of Hermite polynomials
tions exhibit a series of spectacular peaks.5 It is to be no- is
ticed that the present model can successfully account for
occurrence and locations of these peaks in the cross sec- (I-Z 2 )- !aexp ,2_ (yZX)2  

= H,(x)H,(y)z"
tions for low-lying transitions. The present model is not l1-z 2  1 =0 2"n!
expected to reproduce the cross sections for excitations to
higher vibrational levels'5 due to the effects of anharmoni- (A3)
city.

The assumption of constant r in the present calcula- The derivatives of the Hermite polynomials are given by
tions is made for convenience only. Even if r depends on d
the internuclear separation R in some simple analytical -H,(x)=2nH,_,(x). (A4)
manner, it might be possible 6 to carry out the two-center dx

harmonic-oscillator matrix elements analytically. At first A couple of useful sums of these polynomials are 0
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, l I I jma i a m._j(xl2 s-m - m( 2 )= (a +a 2)(s - j [a2l-S-a 2jxl 2  JAS)7. M j 11 22- 2)1/2

and 0

[-x m ~ [p [gH P( m,,n] fm I n1
Y, tP tpPP m~ )H,,p(x)= I P J p 1p(2 +g),1m+n - p~x W (A6)
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Contributions of higher partial waves to the elastic scattering amplitude
for various long-range interactions

J. M. Wadehra and Sultana N. Nahar 0
Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48202

(Received 29 January 1987)

The contributions of higher partial waves to the elastic scattering amplitude are dominated by
long-range interactions which fall off as r as r--+ o. Closed-form expressions for the contributions
of higher partial waves (21 > n - 3) to the scattering amplitude for various long-range interactions (n
ranging from 3 to 8) are presented.

When the interaction between a projectile and a target T=exp(i6i)sin(8). (2)
is central, it is convenient to use the method of partial
waves to obtain the elastic scattering amplitude and the If the quantities T for 1> L are approximated by TB
corresponding differential and integrated cross sections. which are obtained by using the Born approximation,
Each partial wave corresponds to a definite angular then f(O) can be rewritten as
momentum of the system. For a fixed incident energy of 1 L
the projectile, the higher partial waves correspond to f(O)k-J (21+l)T1P1(cos0)+Af, (3a)
larger impact parameters of the incoming projectile. &f ff0
the impact parameter is larger than the range of the in- where
teraction, the contribution of the corresponding partial
wave to the scattering amplitude, for this particular ener- Af_- Y, (21 + 1)TBP 1(cosO) (3b)
gy, is zero. Thus for short-range interactions between I=L +1
projectile and target only a finite number of partial waves 1 L
make contributions to the scattering amplitude. More- =fB(O)-- 7 (21 + l)TBP,(cosO). (3c)
over, the number of contributing partial wav-s increases k_
as the impact energy increases. If the projectile-target in- Here fB(O) is the complete scattering amplitude in the
teraction has a long-range tail, then, in principle, an Born approximation, that is,
infinite number of partial waves will contribute to the am-
plitude. In practice, the phase shifts of the first few (say, 2 f,- V ( g,(a
L) partial waves are computed exactly by solving for the fA()= - J 0 dr V(r)r4
asymptotic radial part of the wave function and the phase
shifts of the higher partial waves (from L + 1 to infinity) = - ®dr V(r)r2 , (21+1 )j?(kr)P,(cosO) (4b)
are estimated by the Born approximation using only the J=0
long-range interaction. (For some recent examples see
Reft. 1 and 2.) The purpose of this work is to provide , 1 (21+lTIBPA(cosO) (4c)
closed-form expressions for the contributions of the higher k1=0
partial waves to the scattering amplitude for various and TIB is the Born approximation for T, namely,
long-range interactions. As far as we are aware, such a
closed-form expression has been obtained previously only T i k C 'd V(r)rj?(kr) (5)
for the lr 4 potential;3 the results for other long-range in- T, f
teractions are new in the present work.

Consider the elastic scattering of a projectile of mass I Now, since only the long-range part of the interaction
and energy E=Iek2/2p by a central potential V(r) which contributes to phase shifts of higher partial waves, it is .,
results in a change in momentum from Aki to Akf for the reasonable to take for V(r), in Eq. (5), a general spherical-
projectile (ki =kf =k). The momentum transfer ly symmetric potential of the form
q=(kf-k) is related to the scattering angle 0 by V(r)= Cna -le 2/r",. (6)

q=2ksin(0/2). For later convenience we define a quanti-

ty z as z=sin(O/2)=q/2k. The partial-wave expansion Here ao=42/me2 is the Bohr radius, -e and m are the
for the elastic scattering amplitude can be written as charge and mass of an electron, and C, are dimensionless

,I coefficients. For certain values of n the two terms on the
.f(O)=k '(21+ 1)TP,(cos), (1) right-hand side of Eq. (3c) could be individually singular

but the difference, namely, Af is always finite and non-

where the transition matrix elements T, are related to singular. Substituting from (6) into (5) and using Eq.
the phase shifts 81 by 6.574.2 of Ref. 4 one obtains

36 1458 © 1987 The American Physical Society
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2n 1] projectile in motion and a neutral polaiizable target, the

-+- - leading correction term behaves8 asymptotically as I /r 5.

122-V/" kao-2 The l/r retardation effect also appears when applied to
2 m 1 , an electron-ion system with the electron bound in a high

2 2+ -+Y- Rydberg state.9 10 This term, which is an addition to the
S1/Ir 4 polarization potential, vanishes in the nonrelativistic

(7) limit. Again using the results in Table I and

The conditions of validity for this expression are M (2 + 1P(cos) Z2

n>l , 1>(n-3)/2. (8) 1=2 (I+2)(l)1(1-1) 3 6

Table I shows explicit expressions for TB for values of n (I la)
from 3 to 8. The corresponding long-range interactions, the closed form expression for Af in this case can be writ-
along with their possible applications in atomic and ten as
molecular physics, are now discussed individually.

(i) n =3. A potential of the form I/ I 3 appears as the 3
leading retardation term (that is, the effect of the finiteness 2jk 2a 03C5 I z 2 l()of the speed of light) for electron-electron interactions.5 ' 6  Af= 3m 13

In a different context, when two identical neutral atoms,
excited to different degrees, exchange a photon it leads7 to L (21 + 1 )PI(os 1 ) Q b)
a "resonance interaction" of the form 1/r 3. Using the ex- I=(I +2M +1)1(-1)
pression for TmD for n = 3 in Table I and the sum

ccM+lP(cosB) n() where z =sin(0/2).

-1n(z) (9a) (iv) n = 6. A long-range potential of the form /i 6 ap-
ti, 1(1+1) pears in various applications in atomic and molecular

where z =sin(0/2), we obtain the following closed-form physics. First, the nonrelativistic van der Waals interac-
weressin( tion between two neutral atoms, each in its lowest energy
expression state, behaves as 1 /r 6 for separations much larger than

paoC31 t(21+I)Pt(cosO)] the Bohr radius.'I Next, the second term in the interac-Af 1+2n(z)+ 1 . (9b) tion energy between a charged projectile and a neutral po-

=1 M+ larizable target behaves, in the adiabatic approximation, as

(ii) n =4. The case of 1/r 4 potential, perhaps the most I r 6. Third, the leading nonadiabatic correction to the
well known in atomic physics, arises as the leading term, dipole term in the interaction between a charged projectile
in the, adiabatic approximation, in interactions of a and a neutral polarizable target behaves asymptotically as
charged projectile (electron, ion, positron) with a neutral I . In these cases one can use
polarizable target. Again using the relevant entry in M P(cosO) z 3

Table!I for Tm and $ = (2 1+5)( 2 1+ 3 )(21-1)( 2 1- 3 )- 18 (12a)

P1(cosO) Z
S4=  ( _) _ _ (10a) and the results of Table I to obtain the following closed-

1 0 (21 +3)(21 -1) 2 'form expression for Af,
the closed form expression for Af becomes 67rrk 3a C6

1V 2(cos) ( Ico m
J=0l21+b) (21+3)

with z=sin(/2). This expression has previously been =18 1'0(21+5)(21+3)(21-1)(21-3)
obtained by Thompson.3  (12b)

(iii) n = 5. When retardation effects are taken into ac-
count for interactions between a structureless charged where, as before, z =sin(0/2).

TABLE I. Explicit expressions for T 8 for various long-range interactions.

Condition of- (ka)'

m C2 TIB validity

3 l[(!+ 1)] >1
4 21'/[(21+3)(21+l)(21 - )/ >1
5 2/[3(1 +2)(l + I)1( - 1)] 1>2
6 61r/[(21 + 5)(21 + 3)(21 + 1)(21 - 1)(21 - 3)] 1>2
7 8/[15(l +3)(l +2)Ml + 1)1(1 - I)( -2)] 1>3
8 2Oir/[(21 + 7)(21 + 5)(21 + 3)(21 + 1)(21 - 1)(21 - 3)(21- 5) 1>3



1460 BRIEF REPORTS 36

(v) n =7. When retardation effects are taken into ac- 8,tk 4a C 7  _ 43 z 2  Z4

count the interaction between two neutral atoms in their Af= + +-ln(z)

lowest energy states behaves as 1 /r 7 for extremely large 15m 240 5 80 2

atom-atom separations. 1'0 13 This interaction is a replace- L (21 + 1 )PI (cose)
ment for and not an additive correction to the nonrela- +
tivistic van der Waals interaction. Using the appropriate 1=3 (1 +3)(1 +2)(I + 1)1(1 - IV -2)

entry from Table I and (13b)
where z =sin(e/2).

(21 + 1 )P,(cosO) (vi) n = 8. In investigations of the Rydberg states of
7 =3(1+3)(1)-l_1- 1)(1-2) helium it is noted that terms up to I/r 8 in the polariza-

tion potential arising in the ion-core-electron interaction

43 4 z I - z 4  contribute significantly to the energy levels. 14 15 With the

T 8-0 2 In(z) Q13a) anticipation that interaction terms behaving asymptotical-
ly as 1 /r 8 might also contribute significantly to scattering

processes, we provide the following closed-form expres-

the closed-form exprezsion for Af becomes sion for Af for this case,

Af= Z5 L P(COSO) j (14a)m 450+l =0o(21 +7)(21 +5)(21 +3)(21 -1)(21 -3)(21 -5)'

with z = sin(0/2), using the results in Table I and the sum P,(cos0)
U ) =(2z2 -2z)+(2z 2-l)ln[z(l+z)] , (160

S8P,(COSO) 1=2(-)
S =0 (21 +7)(21 +5)(21 +3)(21 - )(21 -3)(21 -5) P,(cos6)

(14b) 1=3 1-2) =(-7z4+6z 3 +5z 2 -4z)

450 -(6z 4 -6z 2+ I)ln[z( I +z)] , (16g)

The closed-form expressions [Eqs. (9b), (10b), (1lb),
(12b), (13b), and (14a)] for Af for various long-range po- where z =sin(e/2). Now the sums .S3 , S5, and S7 can be
tentials depend crucially on the evaluation of sums Si, easily evaluated by first doing the partial fractions of the
i=3, ... ,8 [Eqs. (9a), (10a), (lla), (12a), (13a), and summand and then using the sums of Eq. (16). The sums
(14b)]. These sums can be obtained as follows. On multi- S4, S6, and Sg are evaluated by first doing the partial frac-
plying both sides of the generating function tions of the summand, then using

j t'P,(cosO)( 1 -2t cosO+t 2) - "/ 2  (15) [P+ 1(cosO)-P - (cosO)]/(21 + 1) sindP(cos (17)
1=0 1(I + 1)dO

by t m (m=-3,-2,-,0,1,2,3) and integrating with [and similar lengthy relations for (P+ 2 -Pt_ 2)/(21+l)
respect to t from 0 to 1, one can establish the following and (P,+ 3 -P-3)/(21+l)] and eventually utilizing the
sums: sums of Eq. (16). It is rather remarkable that after many S

- P(cosO) I Z  3+  pages of algebra the sums S 4, S 6 , and S 8 turn out to be as

ro -- =(20z -l z 4 - 10z 2 +6z -L) simple as in Eqs. (10a), (12a), and (14b), which suggests
=0(1+4) 36 that there could be an easier and perhaps more general

+ ( - 20z 6 + 30z 4_ 1z 2 + 1) procedure (which obviously eluded us) of evaluating sums
of this kind.

X ln(l + lIz) , (1 6a) Finally we comment that in the present work the con-

P,(cosO) tributions of higher partial waves to the elastic scattering
- =((1+-3) 3z2+4z--1) amplitude for various long-range interactions are taken

into account via the first Born approx-. ation. It is now

+(6z 4 -6z 2 + l)ln[(l+z)/z] , (16b) possible to include, in principle, the additional correction
terms via the second Born approximation since an exact

I P-(cosG) , 60 analytical expression for the second Born contribution to

1=0(1+2) ( l)(2z+l)ln[(l ~z)/z] the transition matrix elements T, for any long-range in-
P(cosO) -[+ ]1 teraction has been obtained recently by Wadehra. 6

I -' = ln[(l +z)/zl, (1 6d)
1=0 (1+1) It is a pleasure to thank Professor Larry Spruch for a

-P/(Coe) helpful conversation. This research has been supported,
1 c ) _-ln[z(l +z)] , (16e) in part, by the Air Force Office of Scientific Research un-

der Grant No. AFOSR-84-0143.



36 BRIEF REPORTS 1461

1R. K. Nesbet and S. Geitman, Pbys. Rev. A 33, 3815 (1986). 8J. Bemnabeu and R. Tarrach, Ann. Phys. (N.Y.) 102, 323 (1976). P
2W. L. van Wyngaarden and H. R. J. Walters, J. Phys. B 19, 9E. J. Kelsey and L. Spruch, Phys. Rev. A 18, 15 (1978).

1817 (1986). 10L. Spruch and E. J. Kelsey, Phys. Rev. A 18, 845 (1978).
3D. G. Thompson, Proc. R. Soc. London Ser. A 294, 160 (1966). "F. London, Z. Phys. 63, 245 (1930).
41. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, 12C. J. Kleinman, Y. Hahn, and L. Spruch, Phys. Rev. 165, 53

and Products (Academic, New York, 1965). (1968).
5T. Fulton and P. Martin, Phys. Rev. 95, 811 (1954). 13H. B. G. Casimir and D. Polder, Phys. Rev. 73, 360 (1948).
6L. Spruch, Phys. Today 39(11), 37 (1986). 14R. J. Drachman, Phys. Rev. A 26, 1228 (1982).
7H. Margenau and W. W. Watson, Rev. Mod. Phys. 8, 22 15C. K. Au, Phys. Rev. A 34, 3568 (1986).

(1936). 161. M. Wadehra, J. Phys. B 19, L761 (1986).



B-5 Dissociative Attachment in Low-Energy e + Li2
Collisions, H. H. MICHELS* and J. M. WADEHRA**, AFWAL/
APL, Wright-Patterson AFB, OH. 45433--A study of disso-
ciative attachment (DA) in e + Li2 collisions has been

initiated based on ab initio calculations of the perti-
nent potential energy curves and capture widths. For
collision energies less than 1.4 eV, DA occurs only on

the lowest 2Z+ state of Li-. We find that this state

crosses the ground 1E+ state at Rx - 3.45 X, close to
the sixth vibrational level of Li2 . The imaginary part
of the 2+4 potential has been calculated by analytic
continuation of a discrete representation of e + Li2 and
the autoionizing region of this potential has been

treated using the stabilization method. This resonant
state of Li is of the Feshbach type. Our preliminary
studies indicate that DA should increase for vibra-
tionally excited Li2 , a result similar to that found for

e + H2.
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**Wayne State U., Detroit, MI, 48202. Work supported in
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DISSOCIATIVE ELECTRON ATTACHMENT TO MOLECULAR LITHIUM California, July 24-3P, 1985

J. M. Wadehra and H. H. Michels

:Department of Physics, Wayne State University, Detroit, Michigan 48202 USA
United Technologies Research Center, East Hartford, Connecticut 06108 USA

The fact that both molecular lithium (Li2 ) and polarizability and weak bond strength, the X Lu state
molecular hydrogen (H2 ) are Isoelectronic in the valence of Li- is a true bound state for all internuclear2 ~2+
shell suggests that the rates of electron attachment to separations. The A 2y state, on the other hand, is

these two molecules might also be quite similar. In bound only for R > 6.51 a.u. For smaller internuclear

fact, preliminary results of recent experimentsl separations, this state is the lowest resonance of Li,
indicate that the maximum rate for electron attachment A semiclassical approach utilizing the local-width

to Li2 is about 10
- 8 

cm
3 

sec which is comparable to resonance model is used to obtain the cross sections

the corresponding value
2 

for H2 . and rates for dissociative attachment to Li2. The
Both, experimental observations as well as resonance width for the A 2y state is paramtrized in

theoretical calculations for H2 indicate that atomic units as C(R) = 0.0143 k(R), where k(A) is the

-ovibrational excitation of the molecule can enhance local wave number of the attached electron. The

the electron attachment rate by several orders of behavior of the attachment cross section is investigdt-
magnitude. The aim of present studies is to investi- both as a function of the incident electron energy for

gate whether a similar strong enhancement of the a given rovibrational state of the molecule Li. and as

attachment rates occurs'for Li2 on increasino the a function of the internal energy of the molecule for

temperature, a fixed incident electron energy.

Figure 1 shows the potential curves of some low This research is Supported by AFOSP urnder Grant

lying electronic states of Li2 and Liz. The lowest two
2 2 +2 2 + AFOSR-84-0143 and Contract F49620-83-C-00g4.

states of anion Li2 , name.y the X u and the A ?g

states, possess the same electronic symmetry as the Re ferences

lowest two states of H42, However, due tc large 1. M. W. McGeoch and R. E. Scelier, in Pruceedins of

the Third neternotionl Svrioit.. on the Productor

16 1 i and Ileutralization of lteative Ion s and Beams,

edited by K. Prelec (American !nstitute of Physics,
14 New York, 1984), p. 291.

2. J. M. Wadehra, Phys. Rev. A2q, 106 (1984).
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electron attachment to Li2 '
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CA-5 Vibrational Excitation of Diatomic Molecules

(N2 , CO, Li2 ) during Resonance Scattering of Electrons,*

J.M. WADEHRA and P.J. DRALLOS, Wayne State University--

Aone dimensional integral expression is obtained for
the cross section for resonant vibrational excitation of
diatomic molecules. The potential energy curves for
both the neutral molecule as well as the resonant state
are approximated by one dimensional harmonic oscillators
having arbitrary curvatures and equilibrium positions.
Results of the computations are obtained for the mole-
cules N, and CO, and are in good agreement with
experim nt. Results for resonant vibrational excitation
cross sections for Li 2 are also presented.

Work supported by AFOSR Grant 84-0143
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Thirty-Ninth Annual Gaseous Electronics Conference

October 7-10, 1986
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Program and Abstracts

LC-6 Dissociative Electron Attachment to the Isotopes
of MolecuTar Hydro en,* J. M. WADEHRA, Wayne State U.--
Using a local width model, the cross sections for dissoc-
iative electron attachment to rovibrationally excited
isotopes (HD, HT, D2, DT and T2 ) of H2 are obtained. For
a given rovibrational level, the factor by which the peak
attachment cross section alters on isotope substitution,
varies from about 10 to 65000. For a given isotope, the
factor by which the peak attz hment cross section is
altered on exciting the molecule vibrationally from v=O
to v=1, varies from about 39 to 61. For a giveni isotope,
the factor by which the peak attachment cross section is
altered on exciting the molecule rotationally from J=O to
J=10, varies from about 12 to 6. The reasons for these
observations will be given.

*Supported by AFOSR Grant Number 84-0143.



Presented at the Fifteenth International
C3nference on the Physics of Electronic
and Atomic (ollisions, Brighton,
United Kingdom, July 22-28. 1987.

ELASTIC SCATTERING OF POSITRONS FROM ARGON

J. M. Wadehra and Sultana N. Nahar

Department of Physics and Astronomy, Wayne State University, Detroit, MI 48202, LISA

Differntial and integrated cross sectons for the elastic scattering 10ds (e Ad)
of low- and intennediate-cnergy (3 - 300 eV) positrons and electrons
by argon atoms are calculated. Model potentials are used to represent '
the interactions between positrons or electrons and argon atoms. For

each impact energy, the phase shifts of the lower partial waves are 

obtained exactly by numerical integration of the radial equation. The lop

Bonm approximation is used to obtain the contribution of the higher ..

partial waves to the scattering amplitude. 30Vil
The model potential for positron argon interaction contains the , ~-

static potential of the target atom and Buckinghan type polarization 10 " -

potential with an adjustable parameter d. The electrm argon inteew-tion

is represented by the target static potential (with proper sign), 10". lV)

Buckingham type polarization potential with the parameter d and
exchange potential. The value of d. which depends on the projectile 10 1600V00)

impact energy, is determined by fitting the calculated electron-argon

scattering cross sections (i.e.. differential, integrated and momntunm 10. " l

transfer cross sections) and phase shifts with the measured values of

the same for a particular energy. Then the same value of d is used for 7 10'
the calculation of cross section for positron scattering from argon. 0

When normalized at 90', the relative values of the differential cross 0aO

sections for the elastic scattering of positrons from argon measured by 7K
Hyder et al.

t agree well with the present calculations as shown in Fig.
I. Presendy the group of Kauppila and Stein2 is making measurements K0
for positron scattering from argon at lower impact energies. Their

preliminary results are showing encouraging agreement with the 10'

present calculations.

Suppport of NSF and AFOSR is gratefully acknowledged. 0?

ERfermn 10Iv)

1. G.M.A. Hyder, M.S. Dababneh, Y.-F. Hsieh, W.E. Kauppila,
C.K. Kwan, M. Mahdavi-Hezaveh and T.S. Stein, Phys Rev. 10'
Lett. 51, 2252(1986).

2 W.E. Kauppila and T.S. Stein (private communication). 10v

0 20 40 60 60 t00 120 .0 1,0 15
Scattering Anle (dog)

Fig. 1. Differential cross sections for the elastic scattering of positrons
by argon at various impact energies. Solid lines are the present
theoretical curves The number in parenthesis following an energy
value indicates the power of ten by which the cross section values are
multiplied. The experimental values are from Ref. (I)
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A SI3rLE MODEL FOR THE RESONANT VIBRATIONAL EXCITATION OF MOLECULESI!
Presented at the Fifteenth International P.J. Dralloa and J.H. Wadehra

Conference on the Physics of Electronic

and Atomic Collisions, Brighton,

United Kingdom, July 22-28, 1987. Department of Physics and Astronomy, Wayne State University

Detroit, Michigan 48202

It has been well established that the phenomenon of dt I)PVI(20 2PP

vibrational excitation of a molecule by electron impact - cxp Y) - 2 2.

is dominated by resonance formation . The nonresonant

.ontribution to the vibrational excition Is usually rH 2 (z0)(z] J (2)

.,all. Here we present a clesed-form expression for the *m~2P (1+)( +)

resonant contribution to the amplitude for vibrational where z-exp(It) and B, N, a, 0. yand . Sre constants.

excitation of a molecule by electron impact using a As we will show, knowledge of only three low-lying

simple model. Also, simple recursion relations among transitions is required to obtain the entire matrix for

the excitation amplitudes are obtained which are valid vibrational excitation amplitudes.

for both inelastic and superelastic transitions. Recursion relations among the Franck-Condon
2

In the model we are proposing here, the potential integrals allow us to write recursion relations among

turves of the electronic states of the molecule and of the vibrational excitation amplitudes. These recursion

the resonant anion state are replaced by those of two relations are: 2
simple harmonic oscillators of arbitrary frequencies, I2n( .+-u)4'w.(Q+l)+(-o.)-

2 2wo 2.

curvatures, and equilibrium internuclear separations.

The resonance width rand the level shift A are taken to 2 (2Ww/ in)(ne)
1 2a(m-n+;E) +e. n a(m-n-1;e)I

be independent of the internuclear separation i. The " w2  
2 (n+l'-n+2na-m-n+2;)

nuclear wave function of the intermediate resonant

state, by which the process of vibrational excitation + 01n(m--2;E)) Mo (3a)

proceeds, is obtained In the local-width approximation. 2wu2

This Implies that the model is valid for energies not .2(o2.°2_ 4. + )2+ .(_;E) +4WW.' m'n

too close to the threshold. The use of harmonic oscil- - 2 11 0 102

lators to represent the potential curves implies that + M &mMa I;a)+

the present model would be best suited for vibrational -(a)2.(on 1)(m+2)]"a(n+2 -n;r-2)

transitions among low-lying levels only. + tm(mli)]' 1
a(n2-n;.t2)} 0, (3b)

With the above approximations, the vibrational

transition amplitude can be written as As an illustration of the utility of the recursion

2n 2 In relations derived above, we have numerically evaluated

A(m-n ) k,--\- a(m- n;t) (Is) the vibrstional excitation amplitudes for LI2 and N
• -, 2 2

where using Eqs. (1) and (3a). The Inelastic excitation cross

sections for Li show characteristics similar to those
a n r 4Mlv>x<-Cvlm> 2

A(0-n;) Z. (lb) of molecular hydrogen as expected. The present model
sO Q-V

also successfully accounts for the experimentally

and Q Is a constant that depends on the electron impact observed spectacular peaks in the cross sections for low

energy c . Note that <njv>> and <<vam> are Franck-Condon lying transitions of N

overlap Integrals between vibrational levels of the

initial electronic state of the srget and those of the The support of the Air Force Office of Scientific

resonant anion state. Each of these Franck-Condon Inte- Research through Grant Number AFOSR-84-0143 is
2

grals can be written as a finite sum . Evaluation of gratefully acknowledged.

Eq. (1) will then Involve two finite sums and one infi-

nite sum which can be reduced to a single finite sum and References

a one-dimensional Integral:

2(B21
2  

1 1. J.M. Wadehra, in Nonequilibrium Vibrational Kinetics,

A(m-n;.0 )2.. (m)(n) 22  ed. M. Capitelli (Springer-Verlag, Heidelberg 1986). I,

2,2m"n! p-0 P P
2. P.J. Drallos and J.M. Wadehra, J. Chem. Phys. 5,

6524 (1986).
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Presented at the NATO Advanced Research

Workshop on Atomic Physics with

Positrons, University College London,

United Kingdom, July 15-17, 1987.

ELASTIC SCATTERING OF POSITRONS FROM ARGON

J. M. Wadehra and Sultana N. Nahar

Department of Physics and Astronomy, Wayne State University

Detroit, Michigan 48202, USA

Differential and integrated cross sections for the elastic
scattering of low- and intermediate-energy (3 - 300 eV) positrons and
electrons by argon atoms are calculated using partial wave method. Model
potentials are used to represent the interactions between positrons or
electrons and argon atoms. For each impact energy, the phase shifts of
the lower partial waves are obtained exactly by numerical integration of
the radial part of the Schrodinger equation. The Born approximation is
used to obtain the contribution of the higher partial waves to the
scattering amplitude.

The model potential for positron-argon interaction contains the
static potential of the target atom and a Buckingham type polarization
potential with an adjustable parameter d. The electron-argon interaction
is represented by the target static potential (with proper sign), the
Buckingham type polarization potential with parameter d and an exchange
potential. The value of the parameter d, which depends on the projectile
impact energy, is determined by fitting the calculated electron-argon
scattering cross sections (i.e., differential, integrated and momentum
transfer cross sections) and the phase shifts with the measured values
of the same for a particular energy. Then the same value of d is used
for the calculation of cross sections for positron scattering from argon
at the same impact energy. When normalized at 900, the relative values
of the differential cross sections for the elastic scattering of
positrons from frgon at impact energies of 100, 200 and 300 eV measured
by Hyder et al. agree well with the present calculations as shown2 in
Fig. 1 on the next page. Presently the group of Kauppila and Stein is
making measurements for positron scattering from argon at lower impact
energies. Their preliminary results are showing encouraging agreement
with the present calculations.
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Fig. 1. Differential cross sections for the elastic

scattering of positrons by argon at various impact energies.

Solid lines are the present theoretical curves. The number
in parenthesis following an energy value indicates the power
of ten by which the cross section values are multiplied. The
experimental values are from Ref. 1.

Support of NSF and AFOSR is gratefully acknowledged.

1. G.M.A. Hyder, M.S. Dababneh, Y.-F. Hsieh, W.E. Kauppila, C.K. Kwan,

H. Mahdavi-Hezaveh and T.S.Stein, Phys. Rev. Lett. 57, 2252 (1986).
2. W.E. Kauppila and T.S. Stein (private communication).



Presented at the NATO Advanced
Research Workshop on Atomic Physics
with Positrons, University College London,
United Kingdom, July 15-17, 1987

POSITRONIUM FORMATION FROM ATOMIC HYDROGEN

J. M. Wadehra and Sultana N. Nahar

Department of Physics and Astronomy, Wayne State University

Detroit, Michigan 48202, USA

The first Born approximation and the distorted wave Born
approximation are used to calculate the cross sections for positronium
(Ps) formation in all bound states by the impact of intermediate energy
(20 - 500 eV) positrons on atomic hydrogen. Differential and integrated
cross sections for the formation of Psls), Ps(3s), Ps(2p0 ) and
Ps(2p,) are calculated individually and the 1/n behavior (n being the
principal quantum number) for charge transfer cross sections is used for
n >.,3 to obtain the total cross sections for positronium formation. The
formation of Ps in s-state is evaluated using formulation of the
distorted wave Born approximation similar to that described in Ref. 1.
All calculations are carried out using the prior form of the
interaction. The p-state wave functions of Ps, unlike spherically
symmetric s-state wave functions, are angle dependent and introduce
complexity in the calculations of capture cross sections. The complexity
is reduced by expressing the angle dependent part of the wave function
in terms of an exponential factor. It is observed in the present
calculations that the cross section for Ps formation in n -i 1 state
dominates significantly over that for n - 2 state. No experimental
values of cross sections for Ps formation from atomic hydrogen are
available at present. The present results for the formation of Ps(ls)
compare favorably with some of the other theoretical investigations.
The features of the present differential cross section curves for Ps
formation showing a large maximum in the forward direction followed by a
minimum also agree well with works of other investigators. The total
cross sections for the formation of Ps in all bound states at various
impact energies are shown in Fig. 1 on the next page.
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Fig. 1. Total integrated cross sections for positronium
formation from atomic hydrogen at various positron impact

energies.__ __

Support of NSF and AFOSR is gratefully acknowledged.

1. Rt. Shakeshaft and J.M. Wadehra, Phys. Rev. A22, 968 (1980); Sultana
N. Nahar and J.M. Wadehra, ibid, A35, XXXX (1-987).
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A SIMPLE MODEL FOR THE RESONANT VIBRATIONAL EXCITATION OF MOLECULES

P.J. Drallos and J.M. Wadehra
Department of Physics and Astronomy, Wayne State University

Detroit, Michigan 48202

It has been well established that the phenomenon of vibrational excitation
of a molecule by electron impact is dominated by resonance formation[l]. The
nonresonant contribution, which is important for the elastic scattering of
electrons by a molecule, to the vibrational excitation is usually small. For
example, the spectacular peaks in the cross sections for vibrational excitation
of molecular nitrogen can be satisfactorily reproduced only by using a proper
resonance model. Here we present a closed-form expression for the resonant
contribution to the amplitude for vibrational excitation of a molecule by
electron impact using a simple model. Also, simple recursion relations among
the excitation amplitudes are obtained which are valid for both inelastic and
superelastic transitions.

In the model we are proposing here, the potential curves of the electronic
state of the molecule and of the resonant anion state are replaced by those of
two simple harmonic oscillators of arbitrary frequencies, curvatures,
equilibrium internuclear separations and energy separation. The resonance
width r and the level shift A are taken to be independent of the internuclear
separation k. The nuclear wave function of the intermediate resonant state, by
which the process of vibrational excitation proceeds, is obtained in the
local-width approximation. This implies that the model is valid for energies
not too close to the threshold. The use of harmonic oscillators to represent
the potential curves implies that the present model would be best suited for
obtaining cross sections for vibrational transitions among low-lying levels
only.

From the approximations above, the vibrational transition
amplitude can be written as

A (m - n;E) -"- a(m --n;c) (la )

- if
where

a(m-n;-) = <nIv xvI>
v=O Q-v (1b)

and Q is a constant that depends on the electron impact energy E. Note that
<nv>> and << lm> are Franck-Condon overlap integrals between vibrational
levels of the initial electronic state of the target and those of the resonant
anion state. Each of these Franck-Condon integrals can be written in closed
form as a finite sum[2]. Evaluation of Eq. (1) will then involve two finite
sums and one infinite sum which can be reduced to a single finite sum and a
one-dimensional integral. As we will show, knowledge of only three low-lying
transition amplitudes, in particular a(O.O;E), a(O*1;E) and a(1s1;E), is
required to obtain the entire matrix for vibrational excitation amplitudes.
Explicit expressions for these amplitudes are:

"iANO"Jdt 2 (l p(20 2,^Y) (2a)A 4(z2.yn exp -



-iBNr dt z* (2P3 - (Z-1 \r Y &)1t

JJ

A 0= 0 , ( 2 _)1 (2 2 )o 2b)

A( -Ic)=-iBN 2r ] d, Q z 2 ,  z(1 -y5] 2 4 .(z- 2

4co-wex 0 1 J (2 YMZy z+y z-Y zeo0(z+') (c~(2c)

where z=exp(it) and B, N, a, 0, y and w- are constants.
Recursion relations among the Franck-Condon integrals[2] allow us to write

recursion relations among the vibrational excitation amplitudes. These
recursion relations are:

222 2 2a)°
[2n(co +c0 5-4xo.(Q+1)+()+o) +.-] a(m---n;E) + 4moBn,

2 00

"2-(2(o/co0l2[(n+l)1/2a(m-n+l;) + nlt2a(m-n-l;E)]

2 2
-(0 -o2) {[ [(n+l)(n+2)]1/2a(m-.-n+2;E) + [n(n-1)] 1a(m-n-2;E) =0 - (3a)

2
[2m( 2+0)5 - 4wxwo(Q+l)+(+a).D) 2+ - a(m---n;) +4 wwXo.Sm n

2 0 1/2 __-2o2(2oo6)lf2[(m + 1)1%ra(m+ 1 -- n; -o) + m a(m- 1-- n;E+O)]

-("o -2-) { [(m+l)(rn+2)] 2a(m+2-n;-2Ao) + [m(m-1)] 12a(m-2---n;x+2o) 0 , (3b)

Note that in Eq. (3a) the initial vibrational level m and the incident electron
energy e are fixed in each term. In Eq. (3b), however, the initial vibrational
level m is different in various terms but the final level n is fixed.
Furthermore, the incident electron energy is different although the total
energy is the same in each term of the recursion relation.

As an illustration of the utility of the recursion relations derived above,
we have numerically evaluated the vibrational excitation amplitudes for Li and
N using Eqs. (1) and (3a). The inelastic excitation cross sections for LI2sgow characteristics similar to those of molecular hydrogen as expected.Experimentally the vibrational excitation cross sections for N exhibit a
series of spectacular peaks. The present model can successfuly account for
occurence and locations of these peaks in the cross sections for low lying
transitions.

The support of the Air Force Office of Scientific Research through Grant
Number AFOSR-84-0143 is gratefully acknowledged.
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Time Evolution of Electron and Positron Swarms I

i-Neon*. P.J. Drallos and J.M. Wadehra, Wayne State
University - The time evolution of swarm parameters in
gaseous neon are calculated using a finite difference
solution of the Boltzmann Equation. The finite
difference method provides a more aicurate represen-
tation of the distribution function than does the more
commonly used two-term expansion method. However, this
method normally leads to strong instabilities due to
derivatives which must be evaluated numerically. In the
present work we use a novel algorithm for evaluation of

I the derivatives in which they can be obtained simply andSTACE exactly, thus eliminating the instability problems ABSTRACT

12.0 x 10.5 CNP normally associated with this method. Swarm parameters ENTIRELY
for electrons and positrons in neon are calculated for WITHIN
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